和 $\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+3}}$ を求めます。解析学数列和有理化望遠鏡和ルート2025/6/101. 問題の内容和 ∑k=1n1k+2+k+3\sum_{k=1}^{n} \frac{1}{\sqrt{k+2} + \sqrt{k+3}}∑k=1nk+2+k+31 を求めます。2. 解き方の手順まず、和の中の項を有利化します。1k+2+k+3=1k+2+k+3⋅k+2−k+3k+2−k+3\frac{1}{\sqrt{k+2} + \sqrt{k+3}} = \frac{1}{\sqrt{k+2} + \sqrt{k+3}} \cdot \frac{\sqrt{k+2} - \sqrt{k+3}}{\sqrt{k+2} - \sqrt{k+3}}k+2+k+31=k+2+k+31⋅k+2−k+3k+2−k+3=k+2−k+3(k+2)−(k+3)=k+2−k+3−1=k+3−k+2= \frac{\sqrt{k+2} - \sqrt{k+3}}{(k+2) - (k+3)} = \frac{\sqrt{k+2} - \sqrt{k+3}}{-1} = \sqrt{k+3} - \sqrt{k+2}=(k+2)−(k+3)k+2−k+3=−1k+2−k+3=k+3−k+2したがって、求める和は∑k=1n(k+3−k+2)\sum_{k=1}^{n} (\sqrt{k+3} - \sqrt{k+2})∑k=1n(k+3−k+2)=(4−3)+(5−4)+(6−5)+⋯+(n+3−n+2)= (\sqrt{4} - \sqrt{3}) + (\sqrt{5} - \sqrt{4}) + (\sqrt{6} - \sqrt{5}) + \cdots + (\sqrt{n+3} - \sqrt{n+2})=(4−3)+(5−4)+(6−5)+⋯+(n+3−n+2)これは望遠鏡和なので、=n+3−3= \sqrt{n+3} - \sqrt{3}=n+3−33. 最終的な答えn+3−3\sqrt{n+3} - \sqrt{3}n+3−3