関数 $y = x^2 + 3x$ において、$x$ の値が 1 から 3 まで変化するときの平均変化率を求めます。解析学平均変化率関数二次関数2025/3/271. 問題の内容関数 y=x2+3xy = x^2 + 3xy=x2+3x において、xxx の値が 1 から 3 まで変化するときの平均変化率を求めます。2. 解き方の手順平均変化率は、yの変化量xの変化量\frac{yの変化量}{xの変化量}xの変化量yの変化量 で求められます。まず、x=1x = 1x=1 のときの yyy の値を求めます。y=(1)2+3(1)=1+3=4y = (1)^2 + 3(1) = 1 + 3 = 4y=(1)2+3(1)=1+3=4次に、x=3x = 3x=3 のときの yyy の値を求めます。y=(3)2+3(3)=9+9=18y = (3)^2 + 3(3) = 9 + 9 = 18y=(3)2+3(3)=9+9=18xxx の変化量は 3−1=23 - 1 = 23−1=2 です。yyy の変化量は 18−4=1418 - 4 = 1418−4=14 です。平均変化率は、142=7\frac{14}{2} = 7214=7 となります。3. 最終的な答え7