与えられた13個の数式を計算し、簡単にすることを求められています。代数学式の計算展開因数分解分数計算2025/6/81. 問題の内容与えられた13個の数式を計算し、簡単にすることを求められています。2. 解き方の手順(1) −5+7=2-5 + 7 = 2−5+7=2(2) 1−(−3)=1+3=41 - (-3) = 1 + 3 = 41−(−3)=1+3=4(3) 6+(−2)2=6+4=106 + (-2)^2 = 6 + 4 = 106+(−2)2=6+4=10(4) 2x×(−x)=−2x22x \times (-x) = -2x^22x×(−x)=−2x2(5) 23a+14a=812a+312a=1112a\frac{2}{3}a + \frac{1}{4}a = \frac{8}{12}a + \frac{3}{12}a = \frac{11}{12}a32a+41a=128a+123a=1211a(6) 6a3b×b3÷2a=6a3b23÷2a=2a3b2÷2a=2a3b22a=a2b26a^3b \times \frac{b}{3} \div 2a = \frac{6a^3b^2}{3} \div 2a = 2a^3b^2 \div 2a = \frac{2a^3b^2}{2a} = a^2b^26a3b×3b÷2a=36a3b2÷2a=2a3b2÷2a=2a2a3b2=a2b2(7) 6xy2÷(−35xy)÷(−2x)3=6xy2×(−53xy)÷(−8x3)=−30xy23xy÷(−8x3)=−10y÷(−8x3)=−10y−8x3=5y4x36xy^2 \div (-\frac{3}{5}xy) \div (-2x)^3 = 6xy^2 \times (-\frac{5}{3xy}) \div (-8x^3) = -\frac{30xy^2}{3xy} \div (-8x^3) = -10y \div (-8x^3) = \frac{-10y}{-8x^3} = \frac{5y}{4x^3}6xy2÷(−53xy)÷(−2x)3=6xy2×(−3xy5)÷(−8x3)=−3xy30xy2÷(−8x3)=−10y÷(−8x3)=−8x3−10y=4x35y(8) 8a+94−6a+43=3(8a+9)−4(6a+4)12=24a+27−24a−1612=1112\frac{8a+9}{4} - \frac{6a+4}{3} = \frac{3(8a+9) - 4(6a+4)}{12} = \frac{24a+27-24a-16}{12} = \frac{11}{12}48a+9−36a+4=123(8a+9)−4(6a+4)=1224a+27−24a−16=1211(9) (x+5)(x+4)=x2+4x+5x+20=x2+9x+20(x+5)(x+4) = x^2 + 4x + 5x + 20 = x^2 + 9x + 20(x+5)(x+4)=x2+4x+5x+20=x2+9x+20(10) (x−3y)(x+3y)=x2−(3y)2=x2−9y2(x-3y)(x+3y) = x^2 - (3y)^2 = x^2 - 9y^2(x−3y)(x+3y)=x2−(3y)2=x2−9y2(11) (x+1)(x−1)−(x+3)(x−8)=(x2−1)−(x2−8x+3x−24)=(x2−1)−(x2−5x−24)=x2−1−x2+5x+24=5x+23(x+1)(x-1) - (x+3)(x-8) = (x^2 - 1) - (x^2 - 8x + 3x - 24) = (x^2 - 1) - (x^2 - 5x - 24) = x^2 - 1 - x^2 + 5x + 24 = 5x + 23(x+1)(x−1)−(x+3)(x−8)=(x2−1)−(x2−8x+3x−24)=(x2−1)−(x2−5x−24)=x2−1−x2+5x+24=5x+23(12) (2x−3)2−4x(x−1)=(4x2−12x+9)−(4x2−4x)=4x2−12x+9−4x2+4x=−8x+9(2x-3)^2 - 4x(x-1) = (4x^2 - 12x + 9) - (4x^2 - 4x) = 4x^2 - 12x + 9 - 4x^2 + 4x = -8x + 9(2x−3)2−4x(x−1)=(4x2−12x+9)−(4x2−4x)=4x2−12x+9−4x2+4x=−8x+9(13) (3x−4y)(5x+y)−3(2x−3y)2−(x−2y)(x+2y)=(15x2+3xy−20xy−4y2)−3(4x2−12xy+9y2)−(x2−4y2)=(15x2−17xy−4y2)−(12x2−36xy+27y2)−(x2−4y2)=15x2−17xy−4y2−12x2+36xy−27y2−x2+4y2=(15−12−1)x2+(−17+36)xy+(−4−27+4)y2=2x2+19xy−27y2(3x-4y)(5x+y) - 3(2x-3y)^2 - (x-2y)(x+2y) = (15x^2 + 3xy - 20xy - 4y^2) - 3(4x^2 - 12xy + 9y^2) - (x^2 - 4y^2) = (15x^2 - 17xy - 4y^2) - (12x^2 - 36xy + 27y^2) - (x^2 - 4y^2) = 15x^2 - 17xy - 4y^2 - 12x^2 + 36xy - 27y^2 - x^2 + 4y^2 = (15-12-1)x^2 + (-17+36)xy + (-4-27+4)y^2 = 2x^2 + 19xy - 27y^2(3x−4y)(5x+y)−3(2x−3y)2−(x−2y)(x+2y)=(15x2+3xy−20xy−4y2)−3(4x2−12xy+9y2)−(x2−4y2)=(15x2−17xy−4y2)−(12x2−36xy+27y2)−(x2−4y2)=15x2−17xy−4y2−12x2+36xy−27y2−x2+4y2=(15−12−1)x2+(−17+36)xy+(−4−27+4)y2=2x2+19xy−27y23. 最終的な答え(1) 2(2) 4(3) 10(4) −2x2-2x^2−2x2(5) 1112a\frac{11}{12}a1211a(6) a2b2a^2b^2a2b2(7) 5y4x3\frac{5y}{4x^3}4x35y(8) 1112\frac{11}{12}1211(9) x2+9x+20x^2 + 9x + 20x2+9x+20(10) x2−9y2x^2 - 9y^2x2−9y2(11) 5x+235x + 235x+23(12) −8x+9-8x + 9−8x+9(13) 2x2+19xy−27y22x^2 + 19xy - 27y^22x2+19xy−27y2