関数 $y = -x^2 - 7x + 9$ のグラフ上の点 $(-6, 15)$ における接線の方程式を求める。

解析学微分接線導関数関数のグラフ
2025/3/27

1. 問題の内容

関数 y=x27x+9y = -x^2 - 7x + 9 のグラフ上の点 (6,15)(-6, 15) における接線の方程式を求める。

2. 解き方の手順

まず、与えられた関数を微分して、接線の傾きを求める。
y=x27x+9y = -x^2 - 7x + 9 の導関数は、
dydx=2x7\frac{dy}{dx} = -2x - 7
(6,15)(-6, 15) における接線の傾きは、導関数に x=6x = -6 を代入して計算する。
m=2(6)7=127=5m = -2(-6) - 7 = 12 - 7 = 5
接線の傾き m=5m = 5 と点 (6,15)(-6, 15) を使用して、接線の方程式を求める。
接線の方程式は yy1=m(xx1)y - y_1 = m(x - x_1) の形で表される。ここで (x1,y1)=(6,15)(x_1, y_1) = (-6, 15) である。
y15=5(x(6))y - 15 = 5(x - (-6))
y15=5(x+6)y - 15 = 5(x + 6)
y15=5x+30y - 15 = 5x + 30
y=5x+45y = 5x + 45

3. 最終的な答え

y=5x+45y = 5x + 45

「解析学」の関連問題

次の関数を微分せよ。 (1) $y = \tan^{-1}\frac{x-1}{x+1}$ (2) $y = \sin^{-1}(e^{-x^2})$ (3) $y = \tan^{-1}(e^x +...

微分逆三角関数合成関数の微分
2025/6/28

問題6の(1)、(2)、(3)の極限を計算する。 (1) $\lim_{x \to 0} \frac{\sin x}{\sin 2x}$ (2) $\lim_{x \to 0} \frac{\tan ...

極限三角関数
2025/6/28

与えられた6つの関数をそれぞれ微分する問題です。 (1) $\cos(4x)$ (2) $x \sin x$ (3) $\sin x \cos x$ (4) $\cos(\sin x)$ (5) $\...

微分三角関数合成関数の微分積の微分
2025/6/28

画像には2つの問題があります。 (ii) 関数 $f(x) = \log(1+x)$ の $x=0$ における $n$ 次のテイラー展開を、剰余項も含めて求める。 (12) 関数 $\cos x$ の...

テイラー展開マクローリン展開剰余項微分対数関数三角関数
2025/6/28

問題は2つあります。 (1) $f(x) = \log(1+x)$ の $x=0$ における $n$ 次のテイラー展開を、剰余項も含めて求めよ。 (2) $\cos x$ の有限マクローリン展開とラグ...

テイラー展開マクローリン展開剰余項微分
2025/6/28

与えられた問題は2つあります。 (ii) $f(x) = \log(1+x)$ の $x=0$ における $n$ 次のテイラー展開を剰余項も含めて求めよ。 (12) $\cos x$ の有限マクローリ...

テイラー展開マクローリン展開剰余項微分
2025/6/28

与えられた逆三角関数の値を求めます。具体的には、以下の9つの値を求める問題です。 (1) $\sin^{-1}(\frac{1}{2})$ (2) $\sin^{-1}(-\frac{1}{2})$ ...

逆三角関数三角関数関数の値
2025/6/28

与えられた数列の和を計算する問題です。数列の一般項は $\sqrt{k+3} - \sqrt{k+2}$ であり、$k$ が1から $n$ まで変化するときの総和を求めます。すなわち、 $$ \sum...

数列級数テレスコーピング和和の計算
2025/6/28

曲線 $y = 2\sqrt{x}$ に点 $(-2, 0)$ から引いた接線の方程式を求める。

微分接線関数のグラフ
2025/6/28

三角関数の積を和に変換する公式の証明または確認問題です。具体的には、以下の3つの等式を示します。 (5) $2 \sin x \cos y = \sin (x+y) + \sin (x-y)$ (6)...

三角関数加法定理三角関数の積和変換
2025/6/28