与えられた問題は、関数 $-3x$ の不定積分を求めることです。つまり、 $\int (-3x) dx$ を計算します。

解析学積分不定積分関数基本公式
2025/3/27

1. 問題の内容

与えられた問題は、関数 3x-3x の不定積分を求めることです。つまり、
(3x)dx\int (-3x) dx
を計算します。

2. 解き方の手順

不定積分の基本公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C と、定数倍の性質 kf(x)dx=kf(x)dx\int k f(x) dx = k \int f(x) dx を利用します。
まず、定数 -3 を積分の外に出します。
(3x)dx=3xdx\int (-3x) dx = -3 \int x dx
次に、xx の積分を計算します。xxx1x^1 と考えられるので、n=1n=1 として公式を適用します。
xdx=x1+11+1+C=x22+C\int x dx = \frac{x^{1+1}}{1+1} + C = \frac{x^2}{2} + C
これを元の式に代入します。
3xdx=3(x22+C)=32x2+C-3 \int x dx = -3 (\frac{x^2}{2} + C) = -\frac{3}{2}x^2 + C'
ここで、C=3CC' = -3C は任意の定数なので、改めて CC と書きます。

3. 最終的な答え

(3x)dx=32x2+C\int (-3x) dx = -\frac{3}{2}x^2 + C

「解析学」の関連問題

はい、承知いたしました。画像の問題を解いていきます。

極限テイラー展開不定積分関数の大小比較ロピタルの定理置換積分
2025/7/27

周期 $2\pi$ の周期関数 $f(x)$ をフーリエ級数展開する問題です。関数 $f(x)$ は以下のように定義されています。 $f(x) = \begin{cases} 0, & (-\pi \...

フーリエ級数周期関数積分部分積分
2025/7/27

与えられた極限の計算問題です。 (5) $\lim_{x\to +0} x^a (\log x)^n$, ただし $a>0, n$ は自然数 (6) $\lim_{x\to +0} \log x \c...

極限ロピタルの定理関数の極限変数変換
2025/7/27

以下の問題が与えられています。 (4) $\lim_{x \to 0} \frac{1-e^x + x}{x^2}$ (5) $\lim_{x \to +\infty} x^n (\log x)^n$...

極限テイラー展開不定積分ロピタルの定理置換積分部分分数分解
2025/7/27

与えられた極限を計算します。$a > 0$, $n$は自然数であるという条件の下で、 $$\lim_{x \to +0} x^n (\log x)^n$$ を計算します。

極限ロピタルの定理指数関数対数関数
2025/7/27

与えられた極限を計算します。 $$\lim_{x \to 0} \left( \frac{1}{1-e^x} + \frac{1}{x} \right)$$

極限ロピタルの定理微分指数関数
2025/7/27

与えられた関数をマクローリン展開し、3次までの項を求める問題です。具体的には、以下の3つの関数について計算します。 1. $sin(3x)$

マクローリン展開テイラー展開微分
2025/7/27

与えられた3つの関数について、増減と凹凸を調べ、凹凸付きの増減表を作成し、関数の概形を描く問題です。 * 関数1: $y = \sqrt{\frac{x-1}{x-2}}$ * 関数2: $y...

関数の増減関数の凹凸導関数2階導関数グラフの概形漸近線
2025/7/27

与えられた10個の関数について、n次導関数を求める問題です。

微分導関数高階微分関数の微分
2025/7/27

次の極限値を求める。 1. $\lim_{x \to 0} \frac{\sin 3x}{x}$

極限三角関数マクローリン展開ロピタルの定理
2025/7/27