$\int 4x dx$ を計算します。

解析学積分不定積分定数倍の公式べき乗の積分
2025/3/27

1. 問題の内容

4xdx\int 4x dx を計算します。

2. 解き方の手順

定数倍の積分公式 kf(x)dx=kf(x)dx\int kf(x) dx = k \int f(x) dx を使って、4を積分の外に出します。
4xdx=4xdx\int 4x dx = 4 \int x dx
次に、xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C (ただし n1n \neq -1) を使って、xdx\int x dx を計算します。この場合、n=1n=1 です。
xdx=x1+11+1+C=x22+C\int x dx = \frac{x^{1+1}}{1+1} + C = \frac{x^2}{2} + C
よって、
4xdx=4(x22+C)=2x2+4C4 \int x dx = 4 (\frac{x^2}{2} + C) = 2x^2 + 4C
4C4C も定数なので、CC'とおきます。

3. 最終的な答え

2x2+C2x^2 + C'

「解析学」の関連問題

与えられた数列の和を求める問題です。具体的には、以下の6つの和を計算します。 (1) $\sum_{k=1}^{n} (2k-7)$ (2) $\sum_{k=1}^{n} 3^k$ (3) $\su...

数列級数シグマ等比数列部分分数分解
2025/4/8

画像にある数学の問題を解きます。具体的には、以下の問題です。 (6) 不等式 $9^x > 3^{3x+1}$ を解く。 (7) 方程式 $\log_2(x+1) + \log_2(x-2) = 2$...

不等式対数微分極値積分
2025/4/8

3次関数 $y = 2x^3 + x^2 - 2x - 1$ について、以下の問いに答えます。 (1) 曲線とx軸の共有点のx座標を求めます。 (2) $y \ge 0$ となるxの区間を求めます。 ...

3次関数積分面積因数分解
2025/4/8

(1) 放物線 $y = x^2$ と直線 $y = 2x + 3$ で囲まれた部分の面積を求めます。 (2) 2つの放物線 $y = 2x^2 - 9x - 12$ ($1 \le x \le 5$...

定積分面積放物線積分
2025/4/8

与えられた放物線とx軸、そして指定された直線で囲まれた部分の面積を計算する問題です。具体的には、以下の3つの小問があります。 (1) 放物線 $y = 3x^2 - 4x + 5$ とx軸、直線 $x...

積分面積放物線定積分
2025/4/8

与えられた4つの定積分を計算する問題です。 (1) $\int_{1}^{2} (3x^2 + 4x - 5) dx$ (2) $2\int_{1}^{3} (x-1) dx - \int_{1}^{...

定積分積分積分計算
2025/4/8

(1) $f'(x) = (3x+2)^2$ かつ $f(-1) = 0$ を満たす関数 $f(x)$ を求めよ。 (2) 曲線 $y = f(x)$ 上の点 $(x, y)$ における接線の傾きが ...

積分微分関数
2025/4/8

3次関数 $y = x^3 - 3x^2 - 5x$ のグラフと直線 $y = 4x + a$ の共有点の個数を、$a$ の値によって場合分けして求めます。

3次関数グラフ共有点微分増減極大極小
2025/4/8

$f'(x) = -6x^2 + 6x + 12 = -6(x^2 - x - 2) = -6(x - 2)(x + 1)$

最大値最小値微分三次関数四次関数増減表
2025/4/8

(1) 関数 $y = -2x^3 + 3x^2 - 6$ の極大値と極小値を求める。 (2) 関数 $y = x^3 + kx^2 + 3x + 1$ が常に単調に増加するときの定数 $k$ の値の...

微分極値単調増加判別式
2025/4/8