正六角形について、以下の2つの問題を解きます。 (3) 2個の頂点を結ぶ線分の本数を求めよ。 (4) 対角線の本数を求めよ。

幾何学正六角形組み合わせ対角線図形
2025/6/9

1. 問題の内容

正六角形について、以下の2つの問題を解きます。
(3) 2個の頂点を結ぶ線分の本数を求めよ。
(4) 対角線の本数を求めよ。

2. 解き方の手順

(3) 2個の頂点を結ぶ線分の本数
正六角形の頂点は6つあります。2つの頂点を選ぶ組み合わせは、6個から2個を選ぶ組み合わせ6C2_6C_2で計算できます。
6C2=6!2!(62)!=6!2!4!=6×52×1=15_6C_2 = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15
(4) 対角線の本数
正六角形の対角線の本数は、すべての2つの頂点を結ぶ線分の本数から、正六角形の辺の数を引いたものです。
すべての2つの頂点を結ぶ線分の本数は(3)で求めたように15です。
正六角形の辺の数は6です。
したがって、対角線の本数は 156=915 - 6 = 9 となります。

3. 最終的な答え

(3) 2個の頂点を結ぶ線分の本数:15本
(4) 対角線の本数:9本

「幾何学」の関連問題

3次元極座標において、以下の問いに答える問題です。 (1) $\theta$ と $\phi$ を固定し、$r$ のみを微小量 $\Delta r$ 変化させたとき、単位ベクトル $n_r$ を求める...

3次元極座標ベクトル偏微分単位ベクトル軌跡
2025/6/9

三角形ABCにおいて、外接円の半径をRとするとき、以下の値を求めます。 (1) $b=\sqrt{2}$, $B=45^\circ$のとき、$R$ (2) $A=150^\circ$, $R=4$のと...

三角比正弦定理三角形外接円
2025/6/9

3次元極座標におけるベクトルの変化に関する問題です。 (1) $\theta$ と $\phi$ を固定し、$r$ のみを微小量 $\Delta r$ 変化させたときのベクトル $n_r$ を求める。...

3次元極座標ベクトル偏微分座標変換
2025/6/9

正弦定理を用いて、与えられた三角形の要素から未知の要素を求める問題です。具体的には以下の5つの小問題があります。 (1) $a=5$, $A=30^\circ$, $B=45^\circ$のとき、$b...

正弦定理三角形三角比
2025/6/9

単位長さを自由に設定し、長さ1の線分、$\sqrt{5}$、黄金数$\phi$を作図し、最後に黄金長方形を作図する。

作図黄金比ピタゴラスの定理線分
2025/6/9

4点 $A(3, -2, 0)$, $B(4, -1, 0)$, $C(1, 1, -1)$, $D(x, 1-x, -1)$ が同一平面上にあるとき、$x$ の値を求めよ。

ベクトル空間ベクトル平面行列式
2025/6/9

円 $x^2 + y^2 = 50$ の接線の方程式と接点の座標を求める問題です。ただし、接線は以下の2つの条件を満たします。 (1) 直線 $x+y=1$ に平行 (2) 直線 $7x+y=-2$ ...

接線方程式傾き判別式
2025/6/9

円の中心Oから弦に引かれた2つの線によってできる三角形が図示されています。この三角形の中心角が $x$ で示されています。円周角はそれぞれ $37^\circ$ と $77^\circ$ で与えられて...

円周角中心角角度
2025/6/9

円の中心をOとする円の中に三角形があり、三角形の一つの頂点は円の中心Oに位置している。円周角が$37^\circ$と$77^\circ$であるとき、中心角$x$の大きさを求める。

三角形円周角中心角二等辺三角形
2025/6/9

以下の3つの曲線について、x軸方向に4、y軸方向に3だけ平行移動した後の曲線の方程式と焦点の座標を求めよ。 (1) 放物線 $y^2 = 20x$ (2) 楕円 $\frac{x^2}{25} + \...

放物線楕円双曲線平行移動焦点
2025/6/9