A地点からB地点まで、図に示された経路を最短距離で移動する方法が何通りあるかを求める問題です。図は4x3の格子状の道で、A地点は左上、B地点は右下に位置しています。

離散数学組み合わせ最短経路二項係数格子状の道
2025/6/9

1. 問題の内容

A地点からB地点まで、図に示された経路を最短距離で移動する方法が何通りあるかを求める問題です。図は4x3の格子状の道で、A地点は左上、B地点は右下に位置しています。

2. 解き方の手順

最短距離で移動するためには、右方向への移動と下方向への移動のみを繰り返す必要があります。
* 右方向への移動をR、下方向への移動をDとします。
* A地点からB地点まで移動するためには、右に4回、下に3回移動する必要があります。したがって、移動経路は、4つのRと3つのDを並べた文字列で表現できます。
* 移動経路の総数は、7つの位置の中から3つのDの位置を選ぶ組み合わせの数、または7つの位置の中から4つのRの位置を選ぶ組み合わせの数に等しくなります。
* 組み合わせの数は、二項係数を用いて計算できます。すなわち、7C3_7C_3 または 7C4_7C_4 を計算します。
* 7C3=7!3!(73)!=7!3!4!=7×6×53×2×1=35_7C_3 = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35
* 7C4=7!4!(74)!=7!4!3!=7×6×53×2×1=35_7C_4 = \frac{7!}{4!(7-4)!} = \frac{7!}{4!3!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35
したがって、A地点からB地点まで最短距離で移動する方法は35通りです。

3. 最終的な答え

35通り

「離散数学」の関連問題

集合Mの部分集合A, B, Cについて、以下の命題を示す問題です。 (1) $A \subset B \Rightarrow A \cap C \subset B \cap C$ (2) $A \ca...

集合集合論部分集合共通部分差集合直積
2025/6/10

問題10: A, B, C, D, E, F の 6 人が、円形の 6 人席のテーブルに着席するとき、A と B が隣り合うような並び方は何通りあるか。 問題11: 4 種類の数字 1, 2, 3, ...

順列組み合わせ円順列場合の数重複組合せ
2025/6/10

問題8: 5人の生徒が輪の形に並ぶとき、並び方は何通りあるか。 問題9: 7人が輪の形に並ぶとき、並び方の総数を求めよ。

順列組み合わせ円順列場合の数
2025/6/10

A地点からB地点まで、遠回りせずに最短距離で行く道順が何通りあるかを求める問題です。図は4x3の格子状の道を示しています。

組み合わせ最短経路格子状の道
2025/6/9

7個の文字 a,a,a,b,b,b,b をすべて使って作れる文字列は何通りあるかを求める問題です。

順列組み合わせ重複順列
2025/6/9

A地点からB地点まで、最短距離で行く道順の数を求める問題です。図は縦2マス、横3マスの格子状の道を示しています。

組み合わせ最短経路格子状の道順列
2025/6/9

A地点からB地点まで、最短距離で行く経路の数を求める問題です。図は4x3の格子状の道を示しており、Aは左上の角、Bは右下の角に位置しています。

組み合わせ最短経路格子状の道順列
2025/6/9

"fifteen"という単語の7つの文字すべてを使ってできる文字列が何通りあるか求める問題です。"fifteen"という単語には"e"が2つ含まれています。

順列組み合わせ重複順列文字列
2025/6/9

"baseball"という単語の8文字すべてを使って作れる文字列の総数を求める問題です。

順列組み合わせ文字列階乗
2025/6/9

集合 $A = \{2, 5, 8, 9, 12, 15, 18, 20, 23, 25, 28, 30, 35, 39\}$ と集合 $B = \{1, 5, 8, 9, 15, 17, 20\}$...

集合集合の要素共通部分
2025/6/9