与えられた4x4の行列式を計算します。行列は次の通りです。 $ \begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix} $

代数学線形代数行列式行列計算
2025/6/10

1. 問題の内容

与えられた4x4の行列式を計算します。行列は次の通りです。
\begin{vmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{vmatrix}

2. 解き方の手順

行列式を計算する方法はいくつかありますが、ここでは行または列の入れ替えを利用して、より簡単な形に変形してから計算します。
ステップ1: 1行目と4行目を入れ替えます。この操作により、行列式の符号が反転します。
\begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
符号は 1 -1
ステップ2: 2行目と3行目を入れ替えます。この操作により、行列式の符号が反転します。
\begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
符号は (1)×(1)=1(-1) \times (-1) = 1
ステップ3: この行列は単位行列なので、行列式は1です。
したがって、元の行列の行列式は、符号を考慮すると、
(1)×(1)×1=1 (-1) \times (-1) \times 1 = 1
または、
符号は 1×1=1 1 \times 1 = 1
単位行列の行列式は1です。
したがって、元の行列の行列式は、符号を考慮すると、
(1)2×1=1 (-1)^2 \times 1 = 1 となります。

3. 最終的な答え

1

「代数学」の関連問題

14. 次の空欄に当てはまるものを、必要条件、十分条件、必要十分条件、いずれでもないの中から選びます。 (1) $a=2$ かつ $b=3$ は $ab=6$ であるための条件 (2) $2x-1 >...

条件必要条件十分条件必要十分条件否定論理
2025/6/10

与えられた7つの命題について、それぞれの対偶を記述し、命題の真偽を判定する問題です。命題が偽である場合は、反例を挙げます。

命題対偶真偽判定反例
2025/6/10

与えられた数列 $\{a_n\}$ の階差数列を利用して、一般項 $a_n$ を求める問題です。 (1) 数列: 2, 3, 5, 8, 12, ... (2) 数列: 3, 6, 11, 18, 2...

数列一般項階差数列シグマ
2025/6/10

与えられた2つの行列 $A$ と $B$ の積 $AB$ の行列式 $\det(AB)$ を計算する問題です。 $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 1 & -1...

行列行列式
2025/6/10

与えられた4x4行列の行列式を計算する問題です。行列は以下の通りです。 $ \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 2 & 5 & 1 & ...

線形代数行列式余因子展開行列
2025/6/10

与えられた4x4行列の行列式を計算する問題です。行列は以下の通りです。 $\begin{vmatrix} 3 & 1 & 0 & 2 \\ 2 & 1 & 4 & 3 \\ 0 & 8 & 3 & 4...

行列式線形代数行列
2025/6/10

与えられた4x4行列の行列式を計算する問題です。行列は以下の通りです。 $\begin{vmatrix} 1 & 2 & 3 & 3 \\ 4 & 1 & 2 & 2 \\ 0 & 1 & 1 & 1...

線形代数行列式行列計算
2025/6/10

与えられた二次方程式 $\lambda^2 e^{\lambda t} + \frac{k}{m} e^{\lambda t} = 0$ を解いて、$\lambda$ を $k$ と $m$ を用いて...

二次方程式複素数指数関数固有値
2025/6/10

与えられた二つの式をそれぞれ簡単にします。 (1) $(\log_2 3)(\log_3 8)$ (2) $(\log_4 5)(\log_{25} 2)$

対数対数の底の変換公式指数
2025/6/10

与えられた対数の値を求めたり、式を簡単にしたりする問題です。具体的には以下の4つの問題を解きます。 (1) $\log_9 3$ (2) $\log_{16} 2$ (3) $(\log_2 3)(\...

対数対数の計算対数の底の変換
2025/6/10