## 解答解析学極限数列有理化無限級数2025/6/10## 解答###1. 問題の内容以下の3つの極限を求める問題です。(1) limn→∞(n2+3n+2−n2−3n+2)\lim_{n \to \infty} (\sqrt{n^2 + 3n + 2} - \sqrt{n^2 - 3n + 2})limn→∞(n2+3n+2−n2−3n+2)(2) limn→∞3n−1−4n+122n+3+3n+2\lim_{n \to \infty} \frac{3^{n-1} - 4^{n+1}}{2^{2n+3} + 3^{n+2}}limn→∞22n+3+3n+23n−1−4n+1(3) limn→∞n413+23+33+⋯+n3\lim_{n \to \infty} \frac{n^4}{1^3 + 2^3 + 3^3 + \dots + n^3}limn→∞13+23+33+⋯+n3n4###2. 解き方の手順**(1) limn→∞(n2+3n+2−n2−3n+2)\lim_{n \to \infty} (\sqrt{n^2 + 3n + 2} - \sqrt{n^2 - 3n + 2})limn→∞(n2+3n+2−n2−3n+2)**共役な式を掛けて、分子を有理化します。limn→∞(n2+3n+2−n2−3n+2)=limn→∞(n2+3n+2−n2−3n+2)(n2+3n+2+n2−3n+2)n2+3n+2+n2−3n+2\lim_{n \to \infty} (\sqrt{n^2 + 3n + 2} - \sqrt{n^2 - 3n + 2}) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n + 2} - \sqrt{n^2 - 3n + 2})(\sqrt{n^2 + 3n + 2} + \sqrt{n^2 - 3n + 2})}{\sqrt{n^2 + 3n + 2} + \sqrt{n^2 - 3n + 2}}limn→∞(n2+3n+2−n2−3n+2)=limn→∞n2+3n+2+n2−3n+2(n2+3n+2−n2−3n+2)(n2+3n+2+n2−3n+2)=limn→∞(n2+3n+2)−(n2−3n+2)n2+3n+2+n2−3n+2= \lim_{n \to \infty} \frac{(n^2 + 3n + 2) - (n^2 - 3n + 2)}{\sqrt{n^2 + 3n + 2} + \sqrt{n^2 - 3n + 2}}=limn→∞n2+3n+2+n2−3n+2(n2+3n+2)−(n2−3n+2)=limn→∞6nn2+3n+2+n2−3n+2= \lim_{n \to \infty} \frac{6n}{\sqrt{n^2 + 3n + 2} + \sqrt{n^2 - 3n + 2}}=limn→∞n2+3n+2+n2−3n+26nnnn で割ります。=limn→∞61+3n+2n2+1−3n+2n2= \lim_{n \to \infty} \frac{6}{\sqrt{1 + \frac{3}{n} + \frac{2}{n^2}} + \sqrt{1 - \frac{3}{n} + \frac{2}{n^2}}}=limn→∞1+n3+n22+1−n3+n226n→∞n \to \inftyn→∞ のとき、3n→0\frac{3}{n} \to 0n3→0、2n2→0\frac{2}{n^2} \to 0n22→0 なので、=61+0+0+1−0+0=61+1=62=3= \frac{6}{\sqrt{1 + 0 + 0} + \sqrt{1 - 0 + 0}} = \frac{6}{1 + 1} = \frac{6}{2} = 3=1+0+0+1−0+06=1+16=26=3**(2) limn→∞3n−1−4n+122n+3+3n+2\lim_{n \to \infty} \frac{3^{n-1} - 4^{n+1}}{2^{2n+3} + 3^{n+2}}limn→∞22n+3+3n+23n−1−4n+1**4n+14^{n+1}4n+1 で割ります。limn→∞3n−1−4n+122n+3+3n+2=limn→∞3n−14n+1−122n+34n+1+3n+24n+1=limn→∞13(34)n142−123(44)n4+32(34)n4=limn→∞148(34)n−184+94(34)n\lim_{n \to \infty} \frac{3^{n-1} - 4^{n+1}}{2^{2n+3} + 3^{n+2}} = \lim_{n \to \infty} \frac{\frac{3^{n-1}}{4^{n+1}} - 1}{\frac{2^{2n+3}}{4^{n+1}} + \frac{3^{n+2}}{4^{n+1}}} = \lim_{n \to \infty} \frac{\frac{1}{3} (\frac{3}{4})^n \frac{1}{4^2}- 1}{\frac{2^3 (\frac{4}{4})^n}{4} + \frac{3^2 (\frac{3}{4})^n}{4}} = \lim_{n \to \infty} \frac{\frac{1}{48} (\frac{3}{4})^n- 1}{\frac{8}{4} + \frac{9}{4}(\frac{3}{4})^n}limn→∞22n+3+3n+23n−1−4n+1=limn→∞4n+122n+3+4n+13n+24n+13n−1−1=limn→∞423(44)n+432(43)n31(43)n421−1=limn→∞48+49(43)n481(43)n−1n→∞n \to \inftyn→∞ のとき、(34)n→0(\frac{3}{4})^n \to 0(43)n→0 なので、=0−184+0=−12=−12= \frac{0 - 1}{\frac{8}{4} + 0} = \frac{-1}{2} = -\frac{1}{2}=48+00−1=2−1=−21**(3) limn→∞n413+23+33+⋯+n3\lim_{n \to \infty} \frac{n^4}{1^3 + 2^3 + 3^3 + \dots + n^3}limn→∞13+23+33+⋯+n3n4**13+23+33+⋯+n3=∑k=1nk3=(n(n+1)2)2=n2(n+1)24=n2(n2+2n+1)4=n4+2n3+n241^3 + 2^3 + 3^3 + \dots + n^3 = \sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2 = \frac{n^2(n+1)^2}{4} = \frac{n^2(n^2+2n+1)}{4} = \frac{n^4+2n^3+n^2}{4}13+23+33+⋯+n3=∑k=1nk3=(2n(n+1))2=4n2(n+1)2=4n2(n2+2n+1)=4n4+2n3+n2limn→∞n413+23+33+⋯+n3=limn→∞n4n4+2n3+n24=limn→∞4n4n4+2n3+n2\lim_{n \to \infty} \frac{n^4}{1^3 + 2^3 + 3^3 + \dots + n^3} = \lim_{n \to \infty} \frac{n^4}{\frac{n^4+2n^3+n^2}{4}} = \lim_{n \to \infty} \frac{4n^4}{n^4+2n^3+n^2}limn→∞13+23+33+⋯+n3n4=limn→∞4n4+2n3+n2n4=limn→∞n4+2n3+n24n4n4n^4n4 で割ります。=limn→∞41+2n+1n2= \lim_{n \to \infty} \frac{4}{1+\frac{2}{n}+\frac{1}{n^2}}=limn→∞1+n2+n214n→∞n \to \inftyn→∞ のとき、2n→0\frac{2}{n} \to 0n2→0、1n2→0\frac{1}{n^2} \to 0n21→0 なので、=41+0+0=4= \frac{4}{1+0+0} = 4=1+0+04=4###3. 最終的な答え(1) 333(2) −12-\frac{1}{2}−21(3) 444