与えられた式 $15(\frac{a}{5} + \frac{b}{3})$ を計算して簡単にします。代数学式の計算分配法則分数2025/6/101. 問題の内容与えられた式 15(a5+b3)15(\frac{a}{5} + \frac{b}{3})15(5a+3b) を計算して簡単にします。2. 解き方の手順分配法則を使って、15を括弧の中の各項に掛けます。15(a5+b3)=15⋅a5+15⋅b315(\frac{a}{5} + \frac{b}{3}) = 15 \cdot \frac{a}{5} + 15 \cdot \frac{b}{3}15(5a+3b)=15⋅5a+15⋅3b次に、それぞれの項を計算します。15⋅a5=15a5=3a15 \cdot \frac{a}{5} = \frac{15a}{5} = 3a15⋅5a=515a=3a15⋅b3=15b3=5b15 \cdot \frac{b}{3} = \frac{15b}{3} = 5b15⋅3b=315b=5bしたがって、15(a5+b3)=3a+5b15(\frac{a}{5} + \frac{b}{3}) = 3a + 5b15(5a+3b)=3a+5b3. 最終的な答え3a+5b3a+5b3a+5b