次の定積分の値を求めます。 $\int_{0}^{2} (12x^2 - 4x + 3) dx + \int_{-1}^{0} (12x^2 - 4x + 3) dx$解析学定積分積分計算2025/3/271. 問題の内容次の定積分の値を求めます。∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx\int_{0}^{2} (12x^2 - 4x + 3) dx + \int_{-1}^{0} (12x^2 - 4x + 3) dx∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx2. 解き方の手順まず、不定積分を計算します。∫(12x2−4x+3)dx=12∫x2dx−4∫xdx+3∫dx=12⋅x33−4⋅x22+3x+C=4x3−2x2+3x+C\int (12x^2 - 4x + 3) dx = 12\int x^2 dx - 4\int x dx + 3\int dx = 12 \cdot \frac{x^3}{3} - 4 \cdot \frac{x^2}{2} + 3x + C = 4x^3 - 2x^2 + 3x + C∫(12x2−4x+3)dx=12∫x2dx−4∫xdx+3∫dx=12⋅3x3−4⋅2x2+3x+C=4x3−2x2+3x+C次に、定積分を計算します。∫02(12x2−4x+3)dx=[4x3−2x2+3x]02=(4(2)3−2(2)2+3(2))−(4(0)3−2(0)2+3(0))=(32−8+6)−0=30\int_{0}^{2} (12x^2 - 4x + 3) dx = [4x^3 - 2x^2 + 3x]_{0}^{2} = (4(2)^3 - 2(2)^2 + 3(2)) - (4(0)^3 - 2(0)^2 + 3(0)) = (32 - 8 + 6) - 0 = 30∫02(12x2−4x+3)dx=[4x3−2x2+3x]02=(4(2)3−2(2)2+3(2))−(4(0)3−2(0)2+3(0))=(32−8+6)−0=30∫−10(12x2−4x+3)dx=[4x3−2x2+3x]−10=(4(0)3−2(0)2+3(0))−(4(−1)3−2(−1)2+3(−1))=0−(−4−2−3)=0−(−9)=9\int_{-1}^{0} (12x^2 - 4x + 3) dx = [4x^3 - 2x^2 + 3x]_{-1}^{0} = (4(0)^3 - 2(0)^2 + 3(0)) - (4(-1)^3 - 2(-1)^2 + 3(-1)) = 0 - (-4 - 2 - 3) = 0 - (-9) = 9∫−10(12x2−4x+3)dx=[4x3−2x2+3x]−10=(4(0)3−2(0)2+3(0))−(4(−1)3−2(−1)2+3(−1))=0−(−4−2−3)=0−(−9)=9したがって、∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx=30+9=39\int_{0}^{2} (12x^2 - 4x + 3) dx + \int_{-1}^{0} (12x^2 - 4x + 3) dx = 30 + 9 = 39∫02(12x2−4x+3)dx+∫−10(12x2−4x+3)dx=30+9=393. 最終的な答え39