20人の生徒の中から4人の代表を選ぶとき、X君とY君が必ず選ばれる場合の組み合わせの数を求める問題です。

確率論・統計学組み合わせ確率場合の数組合せ
2025/6/10

1. 問題の内容

20人の生徒の中から4人の代表を選ぶとき、X君とY君が必ず選ばれる場合の組み合わせの数を求める問題です。

2. 解き方の手順

X君とY君がすでに選ばれているので、残りの2人は20人からX君とY君を除いた18人の中から選ぶことになります。つまり、18人の中から2人を選ぶ組み合わせの数を計算します。
これは組み合わせの公式 nCr=n!r!(nr)!{}_{n}C_{r} = \frac{n!}{r!(n-r)!} を用いて計算できます。
この問題では、n=18n = 18r=2r = 2 なので、
18C2=18!2!(182)!=18!2!16!=18×172×1=9×17=153{}_{18}C_{2} = \frac{18!}{2!(18-2)!} = \frac{18!}{2!16!} = \frac{18 \times 17}{2 \times 1} = 9 \times 17 = 153
したがって、X君とY君がともに選ばれる組み合わせは153通りです。

3. 最終的な答え

153通り

「確率論・統計学」の関連問題

大小中3個のサイコロを投げ、出た目の数をそれぞれ$a$, $b$, $c$とするとき、$a \le b \le c$となる場合は何通りあるか。

確率組み合わせ重複組み合わせサイコロ
2025/6/12

5枚の硬貨を同時に投げるとき、裏の出る枚数を確率変数 $X$ とする。$X$ の確率分布を求め、確率 $P(X \ge 2)$ を求める。

確率分布二項分布確率期待値
2025/6/12

赤玉3個と白玉4個が入った袋から、2個の玉を同時に取り出すとき、2個とも白玉が出る確率を求める問題です。

確率組み合わせ確率計算
2025/6/12

袋の中に赤玉が5個、白玉が3個入っている。この中から同時に3個を取り出すとき、少なくとも1個は白玉である取り出し方は何通りあるか。ただし、玉はすべて区別するものとする。

組み合わせ確率余事象
2025/6/12

10人の生徒の中から3人の係を選ぶ方法は何通りあるかを求める問題です。組み合わせの問題であり、順列は考慮しません。

組み合わせ順列場合の数数学的思考
2025/6/12

ある飲食店が新商品XとYを売り出す予定で、5人のモニターに10点満点で採点してもらった。Xの採点xとYの採点yのデータが与えられている。xとyのデータの平均値、分散、標準偏差をそれぞれ求め、どちらのデ...

平均分散標準偏差データの散らばり
2025/6/12

工場Aで製造された製品Pの重さについて、100個の標本を抽出し測定したデータが与えられている。 (1) 標本平均$\bar{X}$と標本分散$\sigma^2$を求める。 (2) 母集団全体の母平均を...

標本平均標本分散正規分布信頼区間統計的推測
2025/6/12

(1) 大人6人と子供3人の合計9人が1列になって山登りをする。登る順番をくじで決めるとき、 - 先頭と最後尾が大人になる確率は? - 子供3人が全員隣り合う確率は? - 子供の前後...

順列組み合わせ確率
2025/6/12

問題は、順列・組み合わせと確率に関する2つの設問で構成されています。 (1) 大人6人と子供3人の合計9人が1列に並ぶ場合の確率について、 - 先頭と最後尾が大人になる確率 - 子供3人が...

順列組み合わせ確率場合の数
2025/6/12

表に与えられた来客数とその確率に基づいて、分散と標準偏差を計算する問題です。期待値は50と既に与えられています。

分散標準偏差期待値確率
2025/6/12