2次関数 $y = x^2 + 2$ のグラフを描き、軸と頂点を求める。

代数学二次関数グラフ放物線頂点
2025/6/10

1. 問題の内容

2次関数 y=x2+2y = x^2 + 2 のグラフを描き、軸と頂点を求める。

2. 解き方の手順

与えられた2次関数は y=x2+2y = x^2 + 2 である。
この関数は、y=x2y = x^2 のグラフをy軸方向に2だけ平行移動したものである。
y=x2y = x^2 のグラフは原点を頂点とする放物線であり、軸はy軸(x=0)である。
したがって、y=x2+2y = x^2 + 2 のグラフも放物線であり、頂点は(0, 2)で、軸はy軸(x=0)である。

3. 最終的な答え

軸: x = 0
頂点: (0, 2)
グラフの概形は、y軸上に頂点(0, 2)を持ち、原点を通る y=x2y = x^2 のグラフをy軸方向に2だけ平行移動させたものになる。

「代数学」の関連問題

画像には4つの連立方程式の問題があります。今回はそのうちの(3)の連立方程式を解きます。 $0.2x + 0.3y = 1$ (1) $x - y = -5$ (2)

連立方程式一次方程式代入法方程式の解
2025/6/12

複素数 $z = 3 - i$ を原点を中心として、(1) $\frac{2}{3}\pi$ ラジアン、(2) $-\frac{\pi}{4}$ ラジアンだけ回転した点を表す複素数をそれぞれ求める問題...

複素数複素平面回転オイラーの公式
2025/6/12

与えられた式 $x^2 - (2a - 3)x + a^2 - 3a + 2$ を因数分解する問題です。

因数分解二次式多項式
2025/6/12

複素数平面上の点 $z$ を点 $\alpha z$ に移す変換が、点 $z$ をどのように移動させる変換であるかを答える問題です。ここで、$\alpha = \sqrt{3} - i$ です。

複素数複素数平面回転拡大極形式
2025/6/12

与えられた多項式 $x^3y + x^2y^2 + x^3 + x^2y - xy - y^2 - x - y$ を因数分解します。

因数分解多項式代数
2025/6/12

変数 $x$ と $y$ が与えられたとき、$y$ が $x$ に比例する場合と反比例する場合について、比例定数 $a$ を用いて $y$ を $x$ の式で表し、グラフの特徴を答える問題です。

比例反比例関数グラフ比例定数
2025/6/12

複素数 $\alpha$ と $\beta$ が与えられています。 $\alpha = 4(\cos\frac{3}{4}\pi + i\sin\frac{3}{4}\pi)$ $\beta = \s...

複素数極形式複素数の積複素数の商
2025/6/12

昨年の小学生の参加者を $x$ 人、中学生の参加者を $y$ 人とする。昨年の参加者の合計は70人であり、今年は小学生が20%減少し、中学生が10%増加した結果、全体で2人減少して68人になった。この...

連立方程式文章題割合方程式
2025/6/12

A組とB組がリサイクル活動で古紙と空き缶を集めた。A組は古紙$x$ kgと空き缶$y$ kgを合わせて40 kg集めた。B組はA組に比べて、古紙は10%多く、空き缶は15%少なく、全体では38 kg集...

連立方程式文章問題割合
2025/6/12

連立方程式 $ax - by = 10$ $2bx + ay = -2$ の解が$(x, y) = (2, 3)$であるとき、$a$と$b$の値を求める問題です。

連立方程式代入方程式の解
2025/6/12