与えられた6つの数式をそれぞれ簡略化する問題です。 (1) $\frac{a^2 + 6ab - 7b^2}{a^2 + 2ab + b^2} \cdot \frac{a+b}{a-b}$ (2) $\frac{p^2 + 5p + 6}{p^2 - 9} \div \frac{p^2 + 4p + 4}{p^3 - 3p^2}$ (3) $\frac{x-3}{x^2-2x} - \frac{x-4}{x^2-4}$ (4) $\frac{a}{ab-b^2} + \frac{b}{ab-a^2}$ (5) $\frac{x}{2x-1} + \frac{x-1}{2x+1} - \frac{4x^2-1}{2x}$ (6) $\left( \frac{x}{x^2-9} - \frac{1}{x-3} \right) \div \frac{x}{x+3}$

代数学式の簡略化分数式因数分解有理式
2025/6/10

1. 問題の内容

与えられた6つの数式をそれぞれ簡略化する問題です。
(1) a2+6ab7b2a2+2ab+b2a+bab\frac{a^2 + 6ab - 7b^2}{a^2 + 2ab + b^2} \cdot \frac{a+b}{a-b}
(2) p2+5p+6p29÷p2+4p+4p33p2\frac{p^2 + 5p + 6}{p^2 - 9} \div \frac{p^2 + 4p + 4}{p^3 - 3p^2}
(3) x3x22xx4x24\frac{x-3}{x^2-2x} - \frac{x-4}{x^2-4}
(4) aabb2+baba2\frac{a}{ab-b^2} + \frac{b}{ab-a^2}
(5) x2x1+x12x+14x212x\frac{x}{2x-1} + \frac{x-1}{2x+1} - \frac{4x^2-1}{2x}
(6) (xx291x3)÷xx+3\left( \frac{x}{x^2-9} - \frac{1}{x-3} \right) \div \frac{x}{x+3}

2. 解き方の手順

(1)
a2+6ab7b2=(a+7b)(ab)a^2 + 6ab - 7b^2 = (a+7b)(a-b)
a2+2ab+b2=(a+b)2a^2 + 2ab + b^2 = (a+b)^2
a2+6ab7b2a2+2ab+b2a+bab=(a+7b)(ab)(a+b)2a+bab=a+7ba+b\frac{a^2 + 6ab - 7b^2}{a^2 + 2ab + b^2} \cdot \frac{a+b}{a-b} = \frac{(a+7b)(a-b)}{(a+b)^2} \cdot \frac{a+b}{a-b} = \frac{a+7b}{a+b}
(2)
p2+5p+6=(p+2)(p+3)p^2 + 5p + 6 = (p+2)(p+3)
p29=(p+3)(p3)p^2 - 9 = (p+3)(p-3)
p2+4p+4=(p+2)2p^2 + 4p + 4 = (p+2)^2
p33p2=p2(p3)p^3 - 3p^2 = p^2(p-3)
p2+5p+6p29÷p2+4p+4p33p2=(p+2)(p+3)(p+3)(p3)÷(p+2)2p2(p3)=(p+2)(p+3)(p+3)(p3)p2(p3)(p+2)2=p2p+2\frac{p^2 + 5p + 6}{p^2 - 9} \div \frac{p^2 + 4p + 4}{p^3 - 3p^2} = \frac{(p+2)(p+3)}{(p+3)(p-3)} \div \frac{(p+2)^2}{p^2(p-3)} = \frac{(p+2)(p+3)}{(p+3)(p-3)} \cdot \frac{p^2(p-3)}{(p+2)^2} = \frac{p^2}{p+2}
(3)
x3x22xx4x24=x3x(x2)x4(x+2)(x2)=(x3)(x+2)(x4)xx(x2)(x+2)=x2x6x2+4xx(x2)(x+2)=3x6x(x2)(x+2)=3(x2)x(x2)(x+2)=3x(x+2)\frac{x-3}{x^2-2x} - \frac{x-4}{x^2-4} = \frac{x-3}{x(x-2)} - \frac{x-4}{(x+2)(x-2)} = \frac{(x-3)(x+2) - (x-4)x}{x(x-2)(x+2)} = \frac{x^2 - x - 6 - x^2 + 4x}{x(x-2)(x+2)} = \frac{3x-6}{x(x-2)(x+2)} = \frac{3(x-2)}{x(x-2)(x+2)} = \frac{3}{x(x+2)}
(4)
aabb2+baba2=ab(ab)+ba(ba)=ab(ab)ba(ab)=a2b2ab(ab)=(a+b)(ab)ab(ab)=a+bab\frac{a}{ab-b^2} + \frac{b}{ab-a^2} = \frac{a}{b(a-b)} + \frac{b}{a(b-a)} = \frac{a}{b(a-b)} - \frac{b}{a(a-b)} = \frac{a^2 - b^2}{ab(a-b)} = \frac{(a+b)(a-b)}{ab(a-b)} = \frac{a+b}{ab}
(5)
x2x1+x12x+12x4x21=x2x1+x12x+12x(2x1)(2x+1)=x(2x+1)+(x1)(2x1)2x(2x1)(2x+1)=2x2+x+2x23x+12x(2x1)(2x+1)=4x24x+1(2x1)(2x+1)=(2x1)2(2x1)(2x+1)=2x12x+1\frac{x}{2x-1} + \frac{x-1}{2x+1} - \frac{2x}{4x^2-1} = \frac{x}{2x-1} + \frac{x-1}{2x+1} - \frac{2x}{(2x-1)(2x+1)} = \frac{x(2x+1) + (x-1)(2x-1) - 2x}{(2x-1)(2x+1)} = \frac{2x^2+x+2x^2-3x+1-2x}{(2x-1)(2x+1)} = \frac{4x^2 - 4x + 1}{(2x-1)(2x+1)} = \frac{(2x-1)^2}{(2x-1)(2x+1)} = \frac{2x-1}{2x+1}
(6)
(xx291x3)÷xx+3=(x(x3)(x+3)1x3)÷xx+3=(x(x+3)(x3)(x+3))÷xx+3=3(x3)(x+3)÷xx+3=3(x3)(x+3)x+3x=3x(x3)\left( \frac{x}{x^2-9} - \frac{1}{x-3} \right) \div \frac{x}{x+3} = \left( \frac{x}{(x-3)(x+3)} - \frac{1}{x-3} \right) \div \frac{x}{x+3} = \left( \frac{x - (x+3)}{(x-3)(x+3)} \right) \div \frac{x}{x+3} = \frac{-3}{(x-3)(x+3)} \div \frac{x}{x+3} = \frac{-3}{(x-3)(x+3)} \cdot \frac{x+3}{x} = \frac{-3}{x(x-3)}

3. 最終的な答え

(1) a+7ba+b\frac{a+7b}{a+b}
(2) p2p+2\frac{p^2}{p+2}
(3) 3x(x+2)\frac{3}{x(x+2)}
(4) a+bab\frac{a+b}{ab}
(5) 2x12x+1\frac{2x-1}{2x+1}
(6) 3x(x3)\frac{-3}{x(x-3)}