円に内接する四角形ABCDがあり、点Aにおける円の接線をlとする。$\angle DAB = 42^\circ$、$\angle ABD = 25^\circ$のとき、$\angle BCD$を求める問題です。

幾何学内接四角形接弦定理角度
2025/6/11

1. 問題の内容

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとする。DAB=42\angle DAB = 42^\circABD=25\angle ABD = 25^\circのとき、BCD\angle BCDを求める問題です。

2. 解き方の手順

まず、接弦定理よりDAB=BCA=42\angle DAB = \angle BCA = 42^\circであることがわかります。
次に、ADB=ACB\angle ADB = \angle ACBであることも分かります。
四角形ABCDは円に内接するので、向かい合う角の和は180度です。つまり、
BCD+BAD=180\angle BCD + \angle BAD = 180^\circ
ABC+ADC=180\angle ABC + \angle ADC = 180^\circ
が成り立ちます。
BAD\angle BADは、BAD=42\angle BAD = 42^\circです。したがって、BCD\angle BCD
BCD=180BAD=18042=138\angle BCD = 180^\circ - \angle BAD = 180^\circ - 42^\circ = 138^\circ

3. 最終的な答え

138

「幾何学」の関連問題

$|\vec{a}| = 2$, $|\vec{b}| = 1$ で、$\vec{a} + \vec{b}$ と $2\vec{a} - 5\vec{b}$ が垂直であるとき、$\vec{a}$ と ...

ベクトル内積ベクトルのなす角
2025/6/12

問題1:$|\vec{a}|=4, |\vec{b}|=3, |\vec{a}+2\vec{b}|=2\sqrt{10}$ を満たすとき、以下の値を求める。 (1) $\vec{a} \cdot \v...

ベクトル内積ベクトルの大きさ
2025/6/12

$\triangle OAB$において、辺$AB$を$2:3$の比に内分する点を$L$, 辺$OA$の中点を$M$とし、線分$OL$と線分$BM$の交点を$P$とするとき、$BP:PM$を求めよ。

ベクトル内分点線分の比平面幾何
2025/6/12

$\triangle OAB$において、辺$AB$を$2:3$に内分する点を$L$、辺$OA$の中点を$M$とする。線分$OL$と線分$BM$の交点を$P$とするとき、$BP:PM$の比を求めよ。

ベクトル内分交点
2025/6/12

三角形OABにおいて、辺ABを2:3に内分する点をL、辺OAの中点をMとする。線分OLと線分BMの交点をPとするとき、線分BPと線分PMの比(BP:PM)を求める。

ベクトル内分点線形結合ベクトルの演算
2025/6/12

$\triangle OAB$ において、辺 $AB$ を $2:3$ に内分する点を $L$、辺 $OA$ の中点を $M$ とし、線分 $OL$ と線分 $BM$ の交点を $P$ とするとき、$...

ベクトル内分点線分の交点図形
2025/6/12

四面体OABCにおいて、AB=5, BC=7, CA=8, OA=OB=OC=7である。 (1) ∠BACの大きさと、△ABCの外接円の半径Rを求める。

四面体三角比余弦定理正弦定理外接円空間図形
2025/6/12

三角形OABにおいて、辺ABを2:3に内分する点をL、辺OAの中点をMとする。線分OLと線分BMの交点をPとするとき、BP:PMの比を求める。

ベクトル内分三角形線分
2025/6/12

円に内接する四角形ABCDにおいて、$AB=CD=2$, $BC=3$, $\angle DAB = 120^\circ$である。 (1) 対角線BDと辺ADの長さを求めよ。 (2) 四角形ABCDの...

四角形余弦定理面積三角比
2025/6/12

与えられた三角形ABCにおいて、以下の3つの問題について指定された辺の長さを求めます。 (1) $a=2, b=2\sqrt{3}, C=30^\circ$のとき、$c$を求める。 (2) $a=\s...

三角形余弦定理辺の長さ
2025/6/12