関数 $x^{\cos(x^2)}$ を微分する問題です。解析学微分対数微分連鎖律積の微分法2025/6/121. 問題の内容関数 xcos(x2)x^{\cos(x^2)}xcos(x2) を微分する問題です。2. 解き方の手順y=xcos(x2)y = x^{\cos(x^2)}y=xcos(x2) と置きます。両辺の自然対数を取ると、lny=cos(x2)lnx\ln y = \cos(x^2) \ln xlny=cos(x2)lnx両辺を xxx で微分します。左辺は連鎖律(chain rule)を使って微分します。右辺は積の微分法を使います。1ydydx=ddx[cos(x2)lnx]\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} [\cos(x^2) \ln x]y1dxdy=dxd[cos(x2)lnx]1ydydx=ddx[cos(x2)]⋅lnx+cos(x2)⋅ddx[lnx]\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}[\cos(x^2)] \cdot \ln x + \cos(x^2) \cdot \frac{d}{dx}[\ln x]y1dxdy=dxd[cos(x2)]⋅lnx+cos(x2)⋅dxd[lnx]ddx[cos(x2)]\frac{d}{dx}[\cos(x^2)]dxd[cos(x2)] を計算します。連鎖律を使うと、ddx[cos(x2)]=−sin(x2)⋅ddx[x2]=−sin(x2)⋅2x=−2xsin(x2)\frac{d}{dx}[\cos(x^2)] = -\sin(x^2) \cdot \frac{d}{dx}[x^2] = -\sin(x^2) \cdot 2x = -2x \sin(x^2)dxd[cos(x2)]=−sin(x2)⋅dxd[x2]=−sin(x2)⋅2x=−2xsin(x2)ddx[lnx]=1x\frac{d}{dx}[\ln x] = \frac{1}{x}dxd[lnx]=x1これらを代入して、1ydydx=−2xsin(x2)lnx+cos(x2)⋅1x\frac{1}{y} \frac{dy}{dx} = -2x \sin(x^2) \ln x + \cos(x^2) \cdot \frac{1}{x}y1dxdy=−2xsin(x2)lnx+cos(x2)⋅x1dydx=y(−2xsin(x2)lnx+cos(x2)x)\frac{dy}{dx} = y \left( -2x \sin(x^2) \ln x + \frac{\cos(x^2)}{x} \right)dxdy=y(−2xsin(x2)lnx+xcos(x2))y=xcos(x2)y = x^{\cos(x^2)}y=xcos(x2) を代入します。dydx=xcos(x2)(−2xsin(x2)lnx+cos(x2)x)\frac{dy}{dx} = x^{\cos(x^2)} \left( -2x \sin(x^2) \ln x + \frac{\cos(x^2)}{x} \right)dxdy=xcos(x2)(−2xsin(x2)lnx+xcos(x2))dydx=xcos(x2)(cos(x2)x−2xln(x)sin(x2))\frac{dy}{dx} = x^{\cos(x^2)} \left( \frac{\cos(x^2)}{x} - 2x \ln(x) \sin(x^2) \right)dxdy=xcos(x2)(xcos(x2)−2xln(x)sin(x2))3. 最終的な答えddx(xcos(x2))=xcos(x2)(cos(x2)x−2xln(x)sin(x2))\frac{d}{dx} \left( x^{\cos(x^2)} \right) = x^{\cos(x^2)} \left( \frac{\cos(x^2)}{x} - 2x \ln(x) \sin(x^2) \right)dxd(xcos(x2))=xcos(x2)(xcos(x2)−2xln(x)sin(x2))