自宅から25km離れたP地点まで行く。最初の区間は時速7kmで走り、途中で時速42kmのバスに乗り換えた。合計で1時間で到着した場合、走った距離を求める。

代数学方程式文章問題距離速さ時間
2025/6/12

1. 問題の内容

自宅から25km離れたP地点まで行く。最初の区間は時速7kmで走り、途中で時速42kmのバスに乗り換えた。合計で1時間で到着した場合、走った距離を求める。

2. 解き方の手順

* 走った距離を xx kmと置く。
* バスで移動した距離は 25x25 - x km となる。
* 走った時間は x/7x/7 時間、バスに乗った時間は (25x)/42(25-x)/42 時間となる。
* 合計時間が1時間なので、以下の式が成り立つ。
x7+25x42=1 \frac{x}{7} + \frac{25-x}{42} = 1
* 両辺に42をかけて分母を払う。
6x+(25x)=42 6x + (25 - x) = 42
5x+25=42 5x + 25 = 42
5x=17 5x = 17
x=175=3.4 x = \frac{17}{5} = 3.4

3. 最終的な答え

3.4km
選択肢Eが3.4kmなので、答えはE。

「代数学」の関連問題

与えられた連立一次方程式の解を、$s$ と $t$ をパラメータとする形で表す問題です。 連立一次方程式は次の通りです。 $\begin{bmatrix} 1 & -8 & 5 & 6 & -23 \...

線形代数連立一次方程式行列簡約化
2025/6/13

与えられた連立一次方程式の解を求め、パラメータ $s$ と $t$ を用いて一般解を表現する問題です。連立一次方程式は、行列形式で以下のように与えられています。 $\begin{bmatrix} 1 ...

連立一次方程式行列線形代数拡大係数行列行基本変形パラメータ表示
2025/6/13

与えられた6つの対数関数について、定義域を求める問題。 それぞれの関数は以下の通りです。 (1) $y = \log(5x - 1)$ (2) $y = \log((x + 2)(x - 4))$ (...

対数関数定義域不等式真数条件
2025/6/13

与えられた連立一次方程式を解き、解を2つのパラメータ $s$ と $t$ を用いて表す問題です。方程式は行列形式で与えられています。 $ \begin{bmatrix} 1 & 0 & -1 & -1...

連立一次方程式線形代数行列簡約化パラメータ表示
2025/6/13

与えられた連立一次方程式を解き、解をパラメータ $s$ と $t$ を用いて表す問題です。連立一次方程式は以下の通りです。 $\begin{bmatrix} 1 & 0 & -1 & -1 & 2 \...

連立一次方程式行列線形代数簡約階段形
2025/6/13

与えられた連立一次方程式の解を求め、パラメータ $s$ と $t$ を用いた形で表現せよ。連立一次方程式は以下の通りです。 $ \begin{bmatrix} 1 & -2 & 0 & 9 \\ 1 ...

線形代数連立一次方程式解の表現行基本変形
2025/6/13

与えられた連立一次方程式を解き、$x, y, z$ をパラメータ $s$ を用いて表す問題です。連立一次方程式は以下の通りです。 $\begin{bmatrix} -2 & 1 & -1 \\ -1 ...

連立一次方程式線形代数行列行基本変形パラメータ表示
2025/6/13

次の方程式と不等式を解きます。 (1) $|x+4|=2$ (2) $|x-3|<5$ (3) $|x-2| \ge 1$

絶対値方程式不等式
2025/6/13

不等式 $3 - \frac{x+1}{2} > -\frac{4x-5}{6} + \frac{2x-1}{3}$ を解いてください。

不等式一次不等式解法
2025/6/13

与えられた連立一次方程式を解き、$s$ をパラメータとする解を求めます。連立一次方程式は $ \begin{bmatrix} -3 & 9 & 10 \\ 1 & -3 & -1 \end{bmatr...

線形代数連立一次方程式拡大係数行列行基本変形パラメータ
2025/6/13