関数 $f(x) = x^3 + 2x^2 + 4$ が与えられたとき、$f'(4)$ を求めよ。

解析学微分導関数多項式
2025/3/28

1. 問題の内容

関数 f(x)=x3+2x2+4f(x) = x^3 + 2x^2 + 4 が与えられたとき、f(4)f'(4) を求めよ。

2. 解き方の手順

まず、関数 f(x)f(x) を微分して導関数 f(x)f'(x) を求めます。
f(x)=x3+2x2+4f(x) = x^3 + 2x^2 + 4 なので、微分すると、
f(x)=3x2+4xf'(x) = 3x^2 + 4x
次に、f(x)f'(x)x=4x=4 を代入して、f(4)f'(4) の値を計算します。
f(4)=3(4)2+4(4)=3(16)+16=48+16=64f'(4) = 3(4)^2 + 4(4) = 3(16) + 16 = 48 + 16 = 64

3. 最終的な答え

f(4)=64f'(4) = 64

「解析学」の関連問題

関数 $f(x) = \frac{1}{x^2 - 1}$ に対して、以下の問いに答えます。 (1) 関数 $f(x)$ の定義域 $X$ として適切なものを1つ求めます。 (2) $f(f(y))$...

関数の定義域合成関数微分係数代数計算
2025/6/3

$\sum_{n=0}^{\infty} \frac{\cos n\pi}{3^n}$ を求める問題です。

級数無限級数等比級数収束数列
2025/6/3

与えられた6つの数列の極限を求める問題です。各数列の一般項は以下の通りです。 (1) $a_n = \frac{(n+1)(n+2)}{n^2-3}$ (2) $a_n = \frac{-n^3+1}...

数列極限
2025/6/3

与えられた数列 $3 + \sqrt{3} + 1 + \frac{1}{\sqrt{3}} + \dots$ が等比数列であると仮定して、その和を求めます。

等比数列無限級数数列の和公比
2025/6/3

与えられた2階線形非同次微分方程式 $\frac{d^2y(t)}{dt^2} - 3\frac{dy(t)}{dt} + 2y(t) = 4e^{3t}$ を、初期条件 $y(0) = 0$ と $...

微分方程式2階線形非同次微分方程式初期条件特性方程式
2025/6/3

与えられた一般解 $x(t) = c_1 \sin(\omega_0 t) + c_2 \cos(\omega_0 t)$ に対して、 (i) 速度 $v(t) = \dot{x}(t)$ を求め、 ...

微分三角関数初期条件単振動
2025/6/3

与えられた偏微分方程式 $\frac{\partial}{\partial t} u(x,t) = C^2 \frac{\partial^2}{\partial x^2} u(x,t)$ に対して、以...

偏微分方程式熱方程式変数分離法
2025/6/3

集合 $A = \{x \in \mathbb{R} \mid -1 < x \leq 1\}$ と集合 $B = \{x \in \mathbb{R} \mid 0 < x < 2\}$ が与えられ...

集合上限下限上界下界
2025/6/3

与えられた無限級数の和を求める問題です。 無限級数は $(1+1)+(\frac{1}{2}+\frac{1}{3})+(\frac{1}{4}+\frac{1}{9})+(\frac{1}{8}+\...

無限級数等比数列級数の和収束
2025/6/3

与えられた2つの微分方程式の一般解を求めます。 (a) $y' + y = x^2 e^{-x}$ (b) $xy' + y = 6x^2 - 2x$

微分方程式線形微分方程式積分因子一般解
2025/6/3