次の和 $S$ を求めます。 $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}$解析学級数等比数列無限級数2025/6/121. 問題の内容次の和 SSS を求めます。S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n2. 解き方の手順まず、SSS を書き下します。S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n次に、SSS を 13\frac{1}{3}31 倍したものを書き下します。13S=13+232+333+⋯+n−13n−1+n3n\frac{1}{3}S = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \cdots + \frac{n-1}{3^{n-1}} + \frac{n}{3^n}31S=31+322+333+⋯+3n−1n−1+3nnSSS から 13S\frac{1}{3}S31S を引きます。S−13S=1+13+132+133+⋯+13n−1−n3nS - \frac{1}{3}S = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} - \frac{n}{3^n}S−31S=1+31+321+331+⋯+3n−11−3nn23S=1+13+132+133+⋯+13n−1−n3n\frac{2}{3}S = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} - \frac{n}{3^n}32S=1+31+321+331+⋯+3n−11−3nn1+13+132+133+⋯+13n−11 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}}1+31+321+331+⋯+3n−11 は初項1、公比13\frac{1}{3}31の等比数列の和なので、1+13+132+133+⋯+13n−1=1(1−13n)1−13=1−13n23=32(1−13n)1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} = \frac{1(1-\frac{1}{3^n})}{1-\frac{1}{3}} = \frac{1-\frac{1}{3^n}}{\frac{2}{3}} = \frac{3}{2}(1-\frac{1}{3^n})1+31+321+331+⋯+3n−11=1−311(1−3n1)=321−3n1=23(1−3n1)よって、23S=32(1−13n)−n3n\frac{2}{3}S = \frac{3}{2}(1-\frac{1}{3^n}) - \frac{n}{3^n}32S=23(1−3n1)−3nn23S=32−3213n−n3n\frac{2}{3}S = \frac{3}{2} - \frac{3}{2}\frac{1}{3^n} - \frac{n}{3^n}32S=23−233n1−3nn23S=32−32⋅3n−n3n\frac{2}{3}S = \frac{3}{2} - \frac{3}{2 \cdot 3^n} - \frac{n}{3^n}32S=23−2⋅3n3−3nn23S=32−3+2n2⋅3n\frac{2}{3}S = \frac{3}{2} - \frac{3 + 2n}{2 \cdot 3^n}32S=23−2⋅3n3+2nS=32⋅(32−3+2n2⋅3n)S = \frac{3}{2} \cdot (\frac{3}{2} - \frac{3 + 2n}{2 \cdot 3^n})S=23⋅(23−2⋅3n3+2n)S=94−3(3+2n)4⋅3nS = \frac{9}{4} - \frac{3(3 + 2n)}{4 \cdot 3^n}S=49−4⋅3n3(3+2n)S=94−3+2n4⋅3n−1S = \frac{9}{4} - \frac{3 + 2n}{4 \cdot 3^{n-1}}S=49−4⋅3n−13+2nS=9⋅3n−1−(3+2n)4⋅3n−1S = \frac{9 \cdot 3^{n-1} - (3+2n)}{4 \cdot 3^{n-1}}S=4⋅3n−19⋅3n−1−(3+2n)3. 最終的な答えS=94−2n+34⋅3n−1=9⋅3n−1−2n−34⋅3n−1S = \frac{9}{4} - \frac{2n+3}{4 \cdot 3^{n-1}} = \frac{9 \cdot 3^{n-1} - 2n - 3}{4 \cdot 3^{n-1}}S=49−4⋅3n−12n+3=4⋅3n−19⋅3n−1−2n−3