$\lim_{x\to 1} (x^2 - 2x + 2)^{\frac{x}{x^2 - 2x + 1}}$ を計算します。解析学極限関数の極限対数関数2025/6/131. 問題の内容limx→1(x2−2x+2)xx2−2x+1\lim_{x\to 1} (x^2 - 2x + 2)^{\frac{x}{x^2 - 2x + 1}}limx→1(x2−2x+2)x2−2x+1x を計算します。2. 解き方の手順まず、与えられた式の指数部分に注目します。xx2−2x+1=x(x−1)2\frac{x}{x^2 - 2x + 1} = \frac{x}{(x-1)^2}x2−2x+1x=(x−1)2xまた、底の部分を f(x)=x2−2x+2f(x) = x^2 - 2x + 2f(x)=x2−2x+2 とおきます。f(x)=x2−2x+1+1=(x−1)2+1f(x) = x^2 - 2x + 1 + 1 = (x-1)^2 + 1f(x)=x2−2x+1+1=(x−1)2+1y=limx→1(x2−2x+2)xx2−2x+1y = \lim_{x\to 1} (x^2 - 2x + 2)^{\frac{x}{x^2 - 2x + 1}}y=limx→1(x2−2x+2)x2−2x+1x両辺の自然対数を取ります。lny=limx→1ln((x2−2x+2)xx2−2x+1)\ln y = \lim_{x\to 1} \ln ( (x^2 - 2x + 2)^{\frac{x}{x^2 - 2x + 1}} )lny=limx→1ln((x2−2x+2)x2−2x+1x)lny=limx→1xx2−2x+1ln(x2−2x+2)\ln y = \lim_{x\to 1} \frac{x}{x^2 - 2x + 1} \ln (x^2 - 2x + 2)lny=limx→1x2−2x+1xln(x2−2x+2)lny=limx→1xln(x2−2x+2)x2−2x+1\ln y = \lim_{x\to 1} \frac{x \ln (x^2 - 2x + 2)}{x^2 - 2x + 1}lny=limx→1x2−2x+1xln(x2−2x+2)x=1+hx = 1 + hx=1+h とおくと、x→1x \to 1x→1 のとき h→0h \to 0h→0 なので、lny=limh→0(1+h)ln((1+h)2−2(1+h)+2)((1+h)−1)2\ln y = \lim_{h\to 0} \frac{(1+h) \ln((1+h)^2 - 2(1+h) + 2)}{((1+h)-1)^2}lny=limh→0((1+h)−1)2(1+h)ln((1+h)2−2(1+h)+2)lny=limh→0(1+h)ln(1+2h+h2−2−2h+2)h2\ln y = \lim_{h\to 0} \frac{(1+h) \ln(1+2h+h^2 - 2 - 2h + 2)}{h^2}lny=limh→0h2(1+h)ln(1+2h+h2−2−2h+2)lny=limh→0(1+h)ln(1+h2)h2\ln y = \lim_{h\to 0} \frac{(1+h) \ln(1+h^2)}{h^2}lny=limh→0h2(1+h)ln(1+h2)lny=limh→0(1+h)ln(1+h2)h2\ln y = \lim_{h\to 0} (1+h) \frac{\ln(1+h^2)}{h^2}lny=limh→0(1+h)h2ln(1+h2)limx→0ln(1+x)x=1\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1limx→0xln(1+x)=1 を用いると、lny=limh→0(1+h)⋅1\ln y = \lim_{h\to 0} (1+h) \cdot 1lny=limh→0(1+h)⋅1lny=1\ln y = 1lny=1y=e1=ey = e^1 = ey=e1=e3. 最終的な答えe