与えられた三角関数の式を、sinをcosに、またはcosをsinに変換することで、空欄を埋める問題です。解析学三角関数三角関数の変換sincos2025/6/131. 問題の内容与えられた三角関数の式を、sinをcosに、またはcosをsinに変換することで、空欄を埋める問題です。2. 解き方の手順(1) sin(x−π6)=cos(x+θ)\sin(x - \frac{\pi}{6}) = \cos(x + \theta)sin(x−6π)=cos(x+θ)となるθ\thetaθを求める。三角関数の公式sin(θ)=cos(π2−θ)\sin(\theta) = \cos(\frac{\pi}{2} - \theta)sin(θ)=cos(2π−θ)を利用する。sin(x−π6)=cos(π2−(x−π6))\sin(x - \frac{\pi}{6}) = \cos(\frac{\pi}{2} - (x - \frac{\pi}{6}))sin(x−6π)=cos(2π−(x−6π))=cos(π2−x+π6)= \cos(\frac{\pi}{2} - x + \frac{\pi}{6})=cos(2π−x+6π)=cos(3π6+π6−x)= \cos(\frac{3\pi}{6} + \frac{\pi}{6} - x)=cos(63π+6π−x)=cos(4π6−x)= \cos(\frac{4\pi}{6} - x)=cos(64π−x)=cos(2π3−x)= \cos(\frac{2\pi}{3} - x)=cos(32π−x)=cos(−(x−2π3))= \cos(-(x - \frac{2\pi}{3}))=cos(−(x−32π))=cos(x−2π3)= \cos(x - \frac{2\pi}{3})=cos(x−32π)したがって、sin(x−π6)=cos(x−2π3)\sin(x - \frac{\pi}{6}) = \cos(x - \frac{2\pi}{3})sin(x−6π)=cos(x−32π) である。(2) cos(2x+π6)=sin(2x+ϕ)\cos(2x + \frac{\pi}{6}) = \sin(2x + \phi)cos(2x+6π)=sin(2x+ϕ)となるϕ\phiϕを求める。三角関数の公式cos(θ)=sin(π2−θ)\cos(\theta) = \sin(\frac{\pi}{2} - \theta)cos(θ)=sin(2π−θ)を利用する。cos(2x+π6)=sin(π2−(2x+π6))\cos(2x + \frac{\pi}{6}) = \sin(\frac{\pi}{2} - (2x + \frac{\pi}{6}))cos(2x+6π)=sin(2π−(2x+6π))=sin(π2−2x−π6)= \sin(\frac{\pi}{2} - 2x - \frac{\pi}{6})=sin(2π−2x−6π)=sin(3π6−π6−2x)= \sin(\frac{3\pi}{6} - \frac{\pi}{6} - 2x)=sin(63π−6π−2x)=sin(2π6−2x)= \sin(\frac{2\pi}{6} - 2x)=sin(62π−2x)=sin(π3−2x)= \sin(\frac{\pi}{3} - 2x)=sin(3π−2x)=sin(−(2x−π3))= \sin(-(2x - \frac{\pi}{3}))=sin(−(2x−3π))=−sin(2x−π3)= - \sin(2x - \frac{\pi}{3})=−sin(2x−3π)したがって、cos(2x+π6)=−sin(2x−π3)\cos(2x + \frac{\pi}{6}) = - \sin(2x - \frac{\pi}{3})cos(2x+6π)=−sin(2x−3π) である。3. 最終的な答えsin(x−π6)=cos(x−2π3)\sin(x - \frac{\pi}{6}) = \cos(x - \frac{2\pi}{3})sin(x−6π)=cos(x−32π)cos(2x+π6)=−sin(2x−π3)\cos(2x + \frac{\pi}{6}) = - \sin(2x - \frac{\pi}{3})cos(2x+6π)=−sin(2x−3π)