三角形ABCにおいて、$b=2, c=\sqrt{2}, C=30^\circ$のとき、$a, A, B$を求めよ。幾何学三角比正弦定理三角形角度辺の長さ2025/6/131. 問題の内容三角形ABCにおいて、b=2,c=2,C=30∘b=2, c=\sqrt{2}, C=30^\circb=2,c=2,C=30∘のとき、a,A,Ba, A, Ba,A,Bを求めよ。2. 解き方の手順まず、正弦定理を使って角BBBを求めます。bsinB=csinC\frac{b}{\sin B} = \frac{c}{\sin C}sinBb=sinCc2sinB=2sin30∘\frac{2}{\sin B} = \frac{\sqrt{2}}{\sin 30^\circ}sinB2=sin30∘2sinB=2sin30∘2=2⋅122=12\sin B = \frac{2\sin 30^\circ}{\sqrt{2}} = \frac{2 \cdot \frac{1}{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}}sinB=22sin30∘=22⋅21=21sinB=22\sin B = \frac{\sqrt{2}}{2}sinB=22よって、B=45∘B = 45^\circB=45∘ または B=135∘B = 135^\circB=135∘ です。ケース1: B=45∘B = 45^\circB=45∘ の場合A=180∘−B−C=180∘−45∘−30∘=105∘A = 180^\circ - B - C = 180^\circ - 45^\circ - 30^\circ = 105^\circA=180∘−B−C=180∘−45∘−30∘=105∘正弦定理を使ってaaaを求めます。asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}sinAa=sinCca=csinAsinC=2sin105∘sin30∘=2sin(60∘+45∘)12=22(sin60∘cos45∘+cos60∘sin45∘)a = \frac{c \sin A}{\sin C} = \frac{\sqrt{2} \sin 105^\circ}{\sin 30^\circ} = \frac{\sqrt{2} \sin (60^\circ + 45^\circ)}{\frac{1}{2}} = 2\sqrt{2} (\sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ)a=sinCcsinA=sin30∘2sin105∘=212sin(60∘+45∘)=22(sin60∘cos45∘+cos60∘sin45∘)=22(32⋅22+12⋅22)=22(64+24)=122+42=232+22=3+1= 2\sqrt{2} (\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2}) = 2\sqrt{2} (\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}) = \frac{\sqrt{12}}{2} + \frac{\sqrt{4}}{2} = \frac{2\sqrt{3}}{2} + \frac{2}{2} = \sqrt{3} + 1=22(23⋅22+21⋅22)=22(46+42)=212+24=223+22=3+1ケース2: B=135∘B = 135^\circB=135∘ の場合A=180∘−B−C=180∘−135∘−30∘=15∘A = 180^\circ - B - C = 180^\circ - 135^\circ - 30^\circ = 15^\circA=180∘−B−C=180∘−135∘−30∘=15∘正弦定理を使ってaaaを求めます。asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}sinAa=sinCca=csinAsinC=2sin15∘sin30∘=2sin(45∘−30∘)12=22(sin45∘cos30∘−cos45∘sin30∘)a = \frac{c \sin A}{\sin C} = \frac{\sqrt{2} \sin 15^\circ}{\sin 30^\circ} = \frac{\sqrt{2} \sin (45^\circ - 30^\circ)}{\frac{1}{2}} = 2\sqrt{2} (\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ)a=sinCcsinA=sin30∘2sin15∘=212sin(45∘−30∘)=22(sin45∘cos30∘−cos45∘sin30∘)=22(22⋅32−22⋅12)=22(64−24)=122−42=232−22=3−1= 2\sqrt{2} (\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}) = 2\sqrt{2} (\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}) = \frac{\sqrt{12}}{2} - \frac{\sqrt{4}}{2} = \frac{2\sqrt{3}}{2} - \frac{2}{2} = \sqrt{3} - 1=22(22⋅23−22⋅21)=22(46−42)=212−24=223−22=3−13. 最終的な答えケース1: a=3+1a = \sqrt{3} + 1a=3+1, A=105∘A = 105^\circA=105∘, B=45∘B = 45^\circB=45∘ケース2: a=3−1a = \sqrt{3} - 1a=3−1, A=15∘A = 15^\circA=15∘, B=135∘B = 135^\circB=135∘