半径が6cmの球の体積を求める問題です。

幾何学体積円周率
2025/3/28

1. 問題の内容

半径が6cmの球の体積を求める問題です。

2. 解き方の手順

球の体積を求める公式は以下の通りです。
V=43πr3V = \frac{4}{3}\pi r^3
ここで、VV は球の体積、rr は球の半径です。
問題文より、球の半径 rr は6cmです。
この値を公式に代入して体積を計算します。
V=43π(6)3V = \frac{4}{3}\pi (6)^3
V=43π(216)V = \frac{4}{3}\pi (216)
V=4π(72)V = 4 \pi (72)
V=288πV = 288\pi

3. 最終的な答え

したがって、球の体積は288π cm3288\pi \text{ cm}^3 です。

「幾何学」の関連問題

問題4は、体積が69cm³、高さが9cmの正四角錐の底面の1辺の長さを求める問題です。

正四角錐体積底面平方根
2025/8/5

直角三角形ABCがあり、それぞれの辺を直径とする半円が描かれている。斜線部分の周の長さと面積を円周率$\pi$を用いて求めよ。三角形の各辺の長さは、AB=4cm, AC=3cm, BC=5cmである。

図形三角形半円面積周の長さピタゴラスの定理
2025/8/5

三角形ABCの3辺の長さが与えられたとき、角Aが鋭角、直角、鈍角のいずれであるかを調べる問題です。具体的には、以下の3つのケースについてそれぞれ角Aの種類を判定します。 (1) $a=8$, $b=3...

三角形余弦定理角度鋭角直角鈍角
2025/8/5

$\triangle OAB$ において、辺 $OA$ を $3:1$ に内分する点を $C$、辺 $OB$ を $2:1$ に内分する点を $D$ とする。線分 $BC$ と $AD$ の交点を $...

ベクトル内分交点
2025/8/5

四面体ABCDにおいて、頂点A, B, C, Dの位置ベクトルをそれぞれ$\vec{a}$, $\vec{b}$, $\vec{c}$, $\vec{d}$とする。三角形BCDの重心をGとする。線分A...

ベクトル空間図形重心内分点
2025/8/5

面積が2である$\triangle OAB$において、辺$AB$を$\alpha : (1-\alpha)$に内分する点を$P$、辺$OB$を$1:2$に内分する点を$Q$とする。線分$OP$と$AQ...

ベクトル面積内分
2025/8/5

$\triangle ABC$において、$b=2$, $c=4$, $A=60^\circ$のとき、$a$の値を求めよ。

三角形余弦定理辺の長さ角度
2025/8/5

問題236(1): $\triangle ABC$において、$b=2$, $c=4$, $A=60^\circ$のとき、$a$を求める。 問題237(1): $\triangle ABC$において、$...

三角形余弦定理辺の長さ角度
2025/8/5

与えられた三角関数の等式 $\cos^4\theta - \sin^4\theta = 1 - 2\sin^2\theta$ が正しいことを証明します。

三角関数恒等式証明
2025/8/5

図1の二等辺三角形(合同なものが4つ)を組み合わせて図2, 図3の図形を作った。図2の二等辺三角形の周の長さは48cm、図3の平行四辺形の周の長さは42cmである。図1の(ア)と(イ)の長さをそれぞれ...

図形二等辺三角形平行四辺形周の長さ連立方程式
2025/8/5