$sin(\frac{5\pi}{12})$ の値を求めます。解析学三角関数加法定理三角関数の値2025/6/15はい、承知いたしました。1. 問題の内容sin(5π12)sin(\frac{5\pi}{12})sin(125π) の値を求めます。2. 解き方の手順5π12\frac{5\pi}{12}125π は、π4\frac{\pi}{4}4π と π6\frac{\pi}{6}6π の和として表すことができます。つまり、5π12=3π12+2π12=π4+π6\frac{5\pi}{12} = \frac{3\pi}{12} + \frac{2\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}125π=123π+122π=4π+6π三角関数の加法定理を利用します。sin(A+B)=sinAcosB+cosAsinBsin(A + B) = sinAcosB + cosAsinBsin(A+B)=sinAcosB+cosAsinB より、sin(5π12)=sin(π4+π6)=sin(π4)cos(π6)+cos(π4)sin(π6)sin(\frac{5\pi}{12}) = sin(\frac{\pi}{4} + \frac{\pi}{6}) = sin(\frac{\pi}{4})cos(\frac{\pi}{6}) + cos(\frac{\pi}{4})sin(\frac{\pi}{6})sin(125π)=sin(4π+6π)=sin(4π)cos(6π)+cos(4π)sin(6π)それぞれの三角関数の値を代入します。sin(π4)=22sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}sin(4π)=22cos(π6)=32cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}cos(6π)=23cos(π4)=22cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}cos(4π)=22sin(π6)=12sin(\frac{\pi}{6}) = \frac{1}{2}sin(6π)=21したがって、sin(5π12)=22⋅32+22⋅12=64+24=6+24sin(\frac{5\pi}{12}) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}sin(125π)=22⋅23+22⋅21=46+42=46+23. 最終的な答え6+24\frac{\sqrt{6} + \sqrt{2}}{4}46+2