袋の中に赤玉が2個、白玉が3個入っています。この袋から同時に2個の玉を取り出すとき、取り出した2個とも赤玉である確率を求めなさい。

確率論・統計学確率組み合わせ事象
2025/6/16

1. 問題の内容

袋の中に赤玉が2個、白玉が3個入っています。この袋から同時に2個の玉を取り出すとき、取り出した2個とも赤玉である確率を求めなさい。

2. 解き方の手順

(1) 2個の玉を取り出すすべての場合の数を計算します。これは、5個の玉から2個を選ぶ組み合わせなので、5C2_{5}C_{2} で表されます。
5C2=5!2!(52)!=5!2!3!=5×42×1=10_{5}C_{2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10
(2) 2個とも赤玉である場合の数を計算します。これは、2個の赤玉から2個を選ぶ組み合わせなので、2C2_{2}C_{2} で表されます。
2C2=2!2!(22)!=2!2!0!=2×12×1×1=1_{2}C_{2} = \frac{2!}{2!(2-2)!} = \frac{2!}{2!0!} = \frac{2 \times 1}{2 \times 1 \times 1} = 1
(3) 確率を計算します。確率は、2個とも赤玉である場合の数 ÷ すべての場合の数で求められます。
P(2個とも赤玉)=2個とも赤玉である場合の数すべての場合の数=2C25C2=110P(\text{2個とも赤玉}) = \frac{\text{2個とも赤玉である場合の数}}{\text{すべての場合の数}} = \frac{_{2}C_{2}}{_{5}C_{2}} = \frac{1}{10}

3. 最終的な答え

110\frac{1}{10}

「確率論・統計学」の関連問題

10人を以下の条件で組分けする方法の数を求めます。 (1) 3人と7人の2組に分ける。 (2) 5人ずつA, Bの2組に分ける。 (3) 5人ずつの2組に分ける。 (4) 5人、3人、2人の3組に分け...

組み合わせ場合の数組み合わせの公式
2025/6/16

組み合わせの問題です。${}_{100}C_{98}$ の値を求めます。

組み合わせ二項係数コンビネーション
2025/6/16

与えられた5つの問題は以下の通りです。 (1) 5人が輪になるときの並び方の数を求める。 (2) 異なる色の8個の玉を円形に並べる並べ方の数を求める。 (3) 7人の中から4人を選んで円形に並べる並べ...

順列円順列組み合わせ
2025/6/16

問題は3つあります。 (3) 6人が1回じゃんけんをするとき、手の出し方は何通りあるか。 (4) 3個の数字0, 1, 2を使ってできる4桁の整数は何個あるか。ただし、同じ数字を重複して使ってよいとす...

組み合わせ場合の数指数
2025/6/16

(1) 男子3人、女子3人が1列に並ぶとき、男子3人が続いて並ぶ並び方は何通りあるか。 (2) 男子5人、女子2人が1列に並ぶとき、両端が男子である並び方は何通りあるか。 (3) 男子4人、女子3人が...

順列組み合わせ場合の数数え上げ
2025/6/16

## 問題の解答

順列場合の数組み合わせ数え上げ
2025/6/16

(1) 大小2つのサイコロを投げたとき、出た目の和が3の倍数になる場合は何通りあるか。 (2) 異なる4冊の数学の参考書から1冊、異なる5冊の英語の参考書から1冊、合計2冊を選ぶ方法は何通りあるか。 ...

場合の数確率組み合わせサイコロ積の法則展開
2025/6/16

サイコロを3回投げるゲームがあり、奇数の目が出た回数1回につき500円もらえる。参加料が800円の場合、このゲームに参加するのは得かどうかを判断する。

確率期待値二項分布意思決定
2025/6/16

大小中3つのサイコロを同時に投げたとき、出た目の和が8になる場合は何通りあるかを求める問題です。

確率場合の数サイコロ
2025/6/16

1つのサイコロを3回投げて出る目の数を順に $a$, $b$, $c$ とします。 (1) $a < b < c$ となる場合は何通りあるか。 (2) $a \le b \le c$ となる場合は何通...

確率場合の数組み合わせ重複組み合わせサイコロ
2025/6/16