与えられた積分を計算します。 $\int \frac{4x^3 + 3x^2 + 4x + 14}{(x-1)^2 (x^2+4x+5)} dx$解析学積分部分分数分解不定積分2025/6/161. 問題の内容与えられた積分を計算します。∫4x3+3x2+4x+14(x−1)2(x2+4x+5)dx\int \frac{4x^3 + 3x^2 + 4x + 14}{(x-1)^2 (x^2+4x+5)} dx∫(x−1)2(x2+4x+5)4x3+3x2+4x+14dx2. 解き方の手順まず、被積分関数を部分分数分解します。4x3+3x2+4x+14(x−1)2(x2+4x+5)=Ax−1+B(x−1)2+Cx+Dx2+4x+5\frac{4x^3 + 3x^2 + 4x + 14}{(x-1)^2 (x^2+4x+5)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4x+5}(x−1)2(x2+4x+5)4x3+3x2+4x+14=x−1A+(x−1)2B+x2+4x+5Cx+D両辺に(x−1)2(x2+4x+5)(x-1)^2 (x^2+4x+5)(x−1)2(x2+4x+5)を掛けると4x3+3x2+4x+14=A(x−1)(x2+4x+5)+B(x2+4x+5)+(Cx+D)(x−1)24x^3 + 3x^2 + 4x + 14 = A(x-1)(x^2+4x+5) + B(x^2+4x+5) + (Cx+D)(x-1)^24x3+3x2+4x+14=A(x−1)(x2+4x+5)+B(x2+4x+5)+(Cx+D)(x−1)24x3+3x2+4x+14=A(x3+3x2+x−5)+B(x2+4x+5)+(Cx+D)(x2−2x+1)4x^3 + 3x^2 + 4x + 14 = A(x^3 + 3x^2 + x - 5) + B(x^2+4x+5) + (Cx+D)(x^2-2x+1)4x3+3x2+4x+14=A(x3+3x2+x−5)+B(x2+4x+5)+(Cx+D)(x2−2x+1)4x3+3x2+4x+14=A(x3+3x2+x−5)+B(x2+4x+5)+C(x3−2x2+x)+D(x2−2x+1)4x^3 + 3x^2 + 4x + 14 = A(x^3 + 3x^2 + x - 5) + B(x^2+4x+5) + C(x^3 - 2x^2 + x) + D(x^2 - 2x + 1)4x3+3x2+4x+14=A(x3+3x2+x−5)+B(x2+4x+5)+C(x3−2x2+x)+D(x2−2x+1)4x3+3x2+4x+14=(A+C)x3+(3A+B−2C+D)x2+(A+4B+C−2D)x+(−5A+5B+D)4x^3 + 3x^2 + 4x + 14 = (A+C)x^3 + (3A+B-2C+D)x^2 + (A+4B+C-2D)x + (-5A+5B+D)4x3+3x2+4x+14=(A+C)x3+(3A+B−2C+D)x2+(A+4B+C−2D)x+(−5A+5B+D)係数を比較すると、x3:A+C=4x^3: A+C=4x3:A+C=4x2:3A+B−2C+D=3x^2: 3A+B-2C+D=3x2:3A+B−2C+D=3x:A+4B+C−2D=4x: A+4B+C-2D=4x:A+4B+C−2D=4定数項: −5A+5B+D=14-5A+5B+D=14−5A+5B+D=14x=1x=1x=1を代入すると、4+3+4+14=B(1+4+5)4+3+4+14 = B(1+4+5)4+3+4+14=B(1+4+5)なので、25=10B25 = 10B25=10B, B=52B = \frac{5}{2}B=25A+C=4A+C=4A+C=4より、C=4−AC=4-AC=4−A−5A+5B+D=14-5A+5B+D=14−5A+5B+D=14より、−5A+252+D=14-5A + \frac{25}{2} + D = 14−5A+225+D=14, D=14+5A−252=5A+32D = 14+5A-\frac{25}{2} = 5A + \frac{3}{2}D=14+5A−225=5A+233A+B−2C+D=33A+B-2C+D=33A+B−2C+D=3に代入すると、3A+52−2(4−A)+(5A+32)=33A+\frac{5}{2}-2(4-A)+(5A+\frac{3}{2})=33A+25−2(4−A)+(5A+23)=33A+52−8+2A+5A+32=33A+\frac{5}{2}-8+2A+5A+\frac{3}{2}=33A+25−8+2A+5A+23=310A+4−8=310A + 4 - 8 = 310A+4−8=3, 10A=710A = 710A=7, A=710A = \frac{7}{10}A=107C=4−A=4−710=3310C = 4-A = 4-\frac{7}{10} = \frac{33}{10}C=4−A=4−107=1033D=5A+32=5⋅710+32=72+32=5D = 5A+\frac{3}{2} = 5 \cdot \frac{7}{10} + \frac{3}{2} = \frac{7}{2} + \frac{3}{2} = 5D=5A+23=5⋅107+23=27+23=5よって、4x3+3x2+4x+14(x−1)2(x2+4x+5)=7/10x−1+5/2(x−1)2+(33/10)x+5x2+4x+5\frac{4x^3 + 3x^2 + 4x + 14}{(x-1)^2 (x^2+4x+5)} = \frac{7/10}{x-1} + \frac{5/2}{(x-1)^2} + \frac{(33/10)x+5}{x^2+4x+5}(x−1)2(x2+4x+5)4x3+3x2+4x+14=x−17/10+(x−1)25/2+x2+4x+5(33/10)x+5積分は∫(7/10x−1+5/2(x−1)2+(33/10)x+5x2+4x+5)dx\int (\frac{7/10}{x-1} + \frac{5/2}{(x-1)^2} + \frac{(33/10)x+5}{x^2+4x+5}) dx∫(x−17/10+(x−1)25/2+x2+4x+5(33/10)x+5)dx=710∫1x−1dx+52∫1(x−1)2dx+∫(33/10)x+5x2+4x+5dx= \frac{7}{10} \int \frac{1}{x-1} dx + \frac{5}{2} \int \frac{1}{(x-1)^2} dx + \int \frac{(33/10)x+5}{x^2+4x+5} dx=107∫x−11dx+25∫(x−1)21dx+∫x2+4x+5(33/10)x+5dx=710ln∣x−1∣−52(x−1)+∫(33/10)x+5x2+4x+5dx= \frac{7}{10} \ln|x-1| - \frac{5}{2(x-1)} + \int \frac{(33/10)x+5}{x^2+4x+5} dx=107ln∣x−1∣−2(x−1)5+∫x2+4x+5(33/10)x+5dx∫(33/10)x+5x2+4x+5dx=3320∫2x+4x2+4x+5dx+∫(33/10)x+5−(33/20)(2x+4)x2+4x+5dx\int \frac{(33/10)x+5}{x^2+4x+5} dx = \frac{33}{20} \int \frac{2x+4}{x^2+4x+5} dx + \int \frac{(33/10)x+5 - (33/20)(2x+4)}{x^2+4x+5} dx∫x2+4x+5(33/10)x+5dx=2033∫x2+4x+52x+4dx+∫x2+4x+5(33/10)x+5−(33/20)(2x+4)dx=3320ln(x2+4x+5)+∫(33/10)x+5−(33/10)x−(33/5)x2+4x+5dx= \frac{33}{20} \ln(x^2+4x+5) + \int \frac{(33/10)x+5 - (33/10)x - (33/5)}{x^2+4x+5} dx=2033ln(x2+4x+5)+∫x2+4x+5(33/10)x+5−(33/10)x−(33/5)dx=3320ln(x2+4x+5)+∫−33/5+25/5x2+4x+5dx= \frac{33}{20} \ln(x^2+4x+5) + \int \frac{-33/5 + 25/5}{x^2+4x+5} dx=2033ln(x2+4x+5)+∫x2+4x+5−33/5+25/5dx=3320ln(x2+4x+5)+∫−8/5x2+4x+5dx= \frac{33}{20} \ln(x^2+4x+5) + \int \frac{-8/5}{x^2+4x+5} dx=2033ln(x2+4x+5)+∫x2+4x+5−8/5dx=3320ln(x2+4x+5)−85∫1(x+2)2+1dx= \frac{33}{20} \ln(x^2+4x+5) - \frac{8}{5} \int \frac{1}{(x+2)^2+1} dx=2033ln(x2+4x+5)−58∫(x+2)2+11dx=3320ln(x2+4x+5)−85arctan(x+2)= \frac{33}{20} \ln(x^2+4x+5) - \frac{8}{5} \arctan(x+2)=2033ln(x2+4x+5)−58arctan(x+2)よって、710ln∣x−1∣−52(x−1)+3320ln(x2+4x+5)−85arctan(x+2)+C\frac{7}{10} \ln|x-1| - \frac{5}{2(x-1)} + \frac{33}{20} \ln(x^2+4x+5) - \frac{8}{5} \arctan(x+2) + C107ln∣x−1∣−2(x−1)5+2033ln(x2+4x+5)−58arctan(x+2)+C3. 最終的な答え710ln∣x−1∣−52(x−1)+3320ln(x2+4x+5)−85arctan(x+2)+C\frac{7}{10} \ln|x-1| - \frac{5}{2(x-1)} + \frac{33}{20} \ln(x^2+4x+5) - \frac{8}{5} \arctan(x+2) + C107ln∣x−1∣−2(x−1)5+2033ln(x2+4x+5)−58arctan(x+2)+C