次の関数を微分せよ。 (1) $y = \sin(2x + 3)$ (2) $y = \cos(2 - 3x)$ (3) $y = \tan 2x$解析学微分三角関数合成関数の微分2025/6/161. 問題の内容次の関数を微分せよ。(1) y=sin(2x+3)y = \sin(2x + 3)y=sin(2x+3)(2) y=cos(2−3x)y = \cos(2 - 3x)y=cos(2−3x)(3) y=tan2xy = \tan 2xy=tan2x2. 解き方の手順(1) y=sin(2x+3)y = \sin(2x + 3)y=sin(2x+3)合成関数の微分法を用いる。u=2x+3u = 2x + 3u=2x+3 とおくと、dudx=2\frac{du}{dx} = 2dxdu=2y=sinuy = \sin uy=sinu なので、dydu=cosu\frac{dy}{du} = \cos ududy=cosuよって、dydx=dydu⋅dudx=cosu⋅2=2cos(2x+3)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot 2 = 2\cos(2x + 3)dxdy=dudy⋅dxdu=cosu⋅2=2cos(2x+3)(2) y=cos(2−3x)y = \cos(2 - 3x)y=cos(2−3x)合成関数の微分法を用いる。u=2−3xu = 2 - 3xu=2−3x とおくと、dudx=−3\frac{du}{dx} = -3dxdu=−3y=cosuy = \cos uy=cosu なので、dydu=−sinu\frac{dy}{du} = -\sin ududy=−sinuよって、dydx=dydu⋅dudx=−sinu⋅(−3)=3sin(2−3x)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\sin u \cdot (-3) = 3\sin(2 - 3x)dxdy=dudy⋅dxdu=−sinu⋅(−3)=3sin(2−3x)(3) y=tan2xy = \tan 2xy=tan2x合成関数の微分法を用いる。u=2xu = 2xu=2x とおくと、dudx=2\frac{du}{dx} = 2dxdu=2y=tanuy = \tan uy=tanu なので、dydu=1cos2u\frac{dy}{du} = \frac{1}{\cos^2 u}dudy=cos2u1よって、dydx=dydu⋅dudx=1cos2u⋅2=2cos22x=2sec22x\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{\cos^2 u} \cdot 2 = \frac{2}{\cos^2 2x} = 2\sec^2 2xdxdy=dudy⋅dxdu=cos2u1⋅2=cos22x2=2sec22x3. 最終的な答え(1) dydx=2cos(2x+3)\frac{dy}{dx} = 2\cos(2x + 3)dxdy=2cos(2x+3)(2) dydx=3sin(2−3x)\frac{dy}{dx} = 3\sin(2 - 3x)dxdy=3sin(2−3x)(3) dydx=2cos22x=2sec22x\frac{dy}{dx} = \frac{2}{\cos^2 2x} = 2\sec^2 2xdxdy=cos22x2=2sec22x