定積分 $\int_{-\pi}^{\pi} (\sin x + \cos x + x + 1) dx$ を求めよ。解析学定積分積分三角関数多項式2025/6/171. 問題の内容定積分 ∫−ππ(sinx+cosx+x+1)dx\int_{-\pi}^{\pi} (\sin x + \cos x + x + 1) dx∫−ππ(sinx+cosx+x+1)dx を求めよ。2. 解き方の手順まず、積分を分解します。∫−ππ(sinx+cosx+x+1)dx=∫−ππsinxdx+∫−ππcosxdx+∫−ππxdx+∫−ππ1dx\int_{-\pi}^{\pi} (\sin x + \cos x + x + 1) dx = \int_{-\pi}^{\pi} \sin x dx + \int_{-\pi}^{\pi} \cos x dx + \int_{-\pi}^{\pi} x dx + \int_{-\pi}^{\pi} 1 dx∫−ππ(sinx+cosx+x+1)dx=∫−ππsinxdx+∫−ππcosxdx+∫−ππxdx+∫−ππ1dx次に、それぞれの積分を計算します。* ∫−ππsinxdx=[−cosx]−ππ=−cos(π)−(−cos(−π))=−(−1)−(−(−1))=1−1=0\int_{-\pi}^{\pi} \sin x dx = [-\cos x]_{-\pi}^{\pi} = -\cos(\pi) - (-\cos(-\pi)) = -(-1) - (-(-1)) = 1 - 1 = 0∫−ππsinxdx=[−cosx]−ππ=−cos(π)−(−cos(−π))=−(−1)−(−(−1))=1−1=0* ∫−ππcosxdx=[sinx]−ππ=sin(π)−sin(−π)=0−0=0\int_{-\pi}^{\pi} \cos x dx = [\sin x]_{-\pi}^{\pi} = \sin(\pi) - \sin(-\pi) = 0 - 0 = 0∫−ππcosxdx=[sinx]−ππ=sin(π)−sin(−π)=0−0=0* ∫−ππxdx=[12x2]−ππ=12(π2)−12(−π)2=12π2−12π2=0\int_{-\pi}^{\pi} x dx = [\frac{1}{2}x^2]_{-\pi}^{\pi} = \frac{1}{2}(\pi^2) - \frac{1}{2}(-\pi)^2 = \frac{1}{2}\pi^2 - \frac{1}{2}\pi^2 = 0∫−ππxdx=[21x2]−ππ=21(π2)−21(−π)2=21π2−21π2=0* ∫−ππ1dx=[x]−ππ=π−(−π)=2π\int_{-\pi}^{\pi} 1 dx = [x]_{-\pi}^{\pi} = \pi - (-\pi) = 2\pi∫−ππ1dx=[x]−ππ=π−(−π)=2πしたがって、∫−ππ(sinx+cosx+x+1)dx=0+0+0+2π=2π\int_{-\pi}^{\pi} (\sin x + \cos x + x + 1) dx = 0 + 0 + 0 + 2\pi = 2\pi∫−ππ(sinx+cosx+x+1)dx=0+0+0+2π=2π3. 最終的な答え2π2\pi2π