与えられた10個の対数を含む式の値をそれぞれ求める問題です。代数学対数対数計算指数2025/6/171. 問題の内容与えられた10個の対数を含む式の値をそれぞれ求める問題です。2. 解き方の手順各問題について、以下の手順で計算します。(1) log82+log832\log_8 2 + \log_8 32log82+log832log82+log832=log8(2×32)=log864=log882=2\log_8 2 + \log_8 32 = \log_8 (2 \times 32) = \log_8 64 = \log_8 8^2 = 2log82+log832=log8(2×32)=log864=log882=2(2) log3135−log35\log_3 135 - \log_3 5log3135−log35log3135−log35=log31355=log327=log333=3\log_3 135 - \log_3 5 = \log_3 \frac{135}{5} = \log_3 27 = \log_3 3^3 = 3log3135−log35=log35135=log327=log333=3(3) log63−log6108\log_6 3 - \log_6 108log63−log6108log63−log6108=log63108=log6136=log66−2=−2\log_6 3 - \log_6 108 = \log_6 \frac{3}{108} = \log_6 \frac{1}{36} = \log_6 6^{-2} = -2log63−log6108=log61083=log6361=log66−2=−2(4) log26+log212−2log23\log_2 6 + \log_2 12 - 2\log_2 3log26+log212−2log23log26+log212−2log23=log26+log212−log232=log26+log212−log29=log26×129=log2729=log28=log223=3\log_2 6 + \log_2 12 - 2\log_2 3 = \log_2 6 + \log_2 12 - \log_2 3^2 = \log_2 6 + \log_2 12 - \log_2 9 = \log_2 \frac{6 \times 12}{9} = \log_2 \frac{72}{9} = \log_2 8 = \log_2 2^3 = 3log26+log212−2log23=log26+log212−log232=log26+log212−log29=log296×12=log2972=log28=log223=3(5) log324−log38+log33\log_3 24 - \log_3 8 + \log_3 \sqrt{3}log324−log38+log33log324−log38+log33=log3248+log33=log33+log33=log33+log331/2=1+12=32\log_3 24 - \log_3 8 + \log_3 \sqrt{3} = \log_3 \frac{24}{8} + \log_3 \sqrt{3} = \log_3 3 + \log_3 \sqrt{3} = \log_3 3 + \log_3 3^{1/2} = 1 + \frac{1}{2} = \frac{3}{2}log324−log38+log33=log3824+log33=log33+log33=log33+log331/2=1+21=23(6) 2log10314+log102845−log10272\log_{10} \frac{3}{14} + \log_{10} \frac{28}{45} - \log_{10} \frac{2}{7}2log10143+log104528−log10722log10314+log102845−log1027=log10(314)2+log102845−log1027=log10(314)2×284527=log109196×284527=log109×28×7196×45×2=log109×4×7×74×49×45×2=log10945×2=log10110=log1010−1=−12\log_{10} \frac{3}{14} + \log_{10} \frac{28}{45} - \log_{10} \frac{2}{7} = \log_{10} (\frac{3}{14})^2 + \log_{10} \frac{28}{45} - \log_{10} \frac{2}{7} = \log_{10} \frac{(\frac{3}{14})^2 \times \frac{28}{45}}{\frac{2}{7}} = \log_{10} \frac{\frac{9}{196} \times \frac{28}{45}}{\frac{2}{7}} = \log_{10} \frac{9 \times 28 \times 7}{196 \times 45 \times 2} = \log_{10} \frac{9 \times 4 \times 7 \times 7}{4 \times 49 \times 45 \times 2} = \log_{10} \frac{9}{45 \times 2} = \log_{10} \frac{1}{10} = \log_{10} 10^{-1} = -12log10143+log104528−log1072=log10(143)2+log104528−log1072=log1072(143)2×4528=log10721969×4528=log10196×45×29×28×7=log104×49×45×29×4×7×7=log1045×29=log10101=log1010−1=−1(7) log12813−2log1223+log12269\log_{\frac{1}{2}} \frac{8}{13} - 2\log_{\frac{1}{2}} \frac{2}{3} + \log_{\frac{1}{2}} \frac{26}{9}log21138−2log2132+log21926log12813−2log1223+log12269=log12813−log12(23)2+log12269=log12813×269(23)2=log12813×26949=log128×26×913×9×4=log128×24=log124=log12(12)−2=−2\log_{\frac{1}{2}} \frac{8}{13} - 2\log_{\frac{1}{2}} \frac{2}{3} + \log_{\frac{1}{2}} \frac{26}{9} = \log_{\frac{1}{2}} \frac{8}{13} - \log_{\frac{1}{2}} (\frac{2}{3})^2 + \log_{\frac{1}{2}} \frac{26}{9} = \log_{\frac{1}{2}} \frac{\frac{8}{13} \times \frac{26}{9}}{(\frac{2}{3})^2} = \log_{\frac{1}{2}} \frac{\frac{8}{13} \times \frac{26}{9}}{\frac{4}{9}} = \log_{\frac{1}{2}} \frac{8 \times 26 \times 9}{13 \times 9 \times 4} = \log_{\frac{1}{2}} \frac{8 \times 2}{4} = \log_{\frac{1}{2}} 4 = \log_{\frac{1}{2}} (\frac{1}{2})^{-2} = -2log21138−2log2132+log21926=log21138−log21(32)2+log21926=log21(32)2138×926=log2194138×926=log2113×9×48×26×9=log2148×2=log214=log21(21)−2=−2(8) 12log35−log353\frac{1}{2} \log_3 5 - \log_3 \sqrt{\frac{5}{3}}21log35−log33512log35−log353=log3512−log3(53)12=log3512(53)12=log3512512×3−12=log3312=12\frac{1}{2} \log_3 5 - \log_3 \sqrt{\frac{5}{3}} = \log_3 5^{\frac{1}{2}} - \log_3 (\frac{5}{3})^{\frac{1}{2}} = \log_3 \frac{5^{\frac{1}{2}}}{(\frac{5}{3})^{\frac{1}{2}}} = \log_3 \frac{5^{\frac{1}{2}}}{5^{\frac{1}{2}} \times 3^{-\frac{1}{2}}} = \log_3 3^{\frac{1}{2}} = \frac{1}{2}21log35−log335=log3521−log3(35)21=log3(35)21521=log3521×3−21521=log3321=21(9) log2748+log212−12log242\log_2 \sqrt{\frac{7}{48}} + \log_2 12 - \frac{1}{2} \log_2 42log2487+log212−21log242log2748+log212−12log242=log2(748)12+log212−log2(42)12=log2(748)12×12(42)12=log2748×12242=log27×14448×42=log27×31×42=log212=log22−12=−12\log_2 \sqrt{\frac{7}{48}} + \log_2 12 - \frac{1}{2} \log_2 42 = \log_2 (\frac{7}{48})^{\frac{1}{2}} + \log_2 12 - \log_2 (42)^{\frac{1}{2}} = \log_2 \frac{(\frac{7}{48})^{\frac{1}{2}} \times 12}{(42)^{\frac{1}{2}}} = \log_2 \sqrt{\frac{\frac{7}{48} \times 12^2}{42}} = \log_2 \sqrt{\frac{7 \times 144}{48 \times 42}} = \log_2 \sqrt{\frac{7 \times 3}{1 \times 42}} = \log_2 \sqrt{\frac{1}{2}} = \log_2 2^{-\frac{1}{2}} = -\frac{1}{2}log2487+log212−21log242=log2(487)21+log212−log2(42)21=log2(42)21(487)21×12=log242487×122=log248×427×144=log21×427×3=log221=log22−21=−21(10) log16(5+24−5−24)\log_{16} (\sqrt{5 + \sqrt{24}} - \sqrt{5 - \sqrt{24}})log16(5+24−5−24)まず、5+24−5−24=5+26−5−26=(3+2)2−(3−2)2=(3+2)−(3−2)=22\sqrt{5 + \sqrt{24}} - \sqrt{5 - \sqrt{24}} = \sqrt{5 + 2\sqrt{6}} - \sqrt{5 - 2\sqrt{6}} = \sqrt{(\sqrt{3} + \sqrt{2})^2} - \sqrt{(\sqrt{3} - \sqrt{2})^2} = (\sqrt{3} + \sqrt{2}) - (\sqrt{3} - \sqrt{2}) = 2\sqrt{2}5+24−5−24=5+26−5−26=(3+2)2−(3−2)2=(3+2)−(3−2)=22したがって、log16(22)=log16(2×212)=log16232=log16(1614)3=log161634=34\log_{16} (2\sqrt{2}) = \log_{16} (2 \times 2^{\frac{1}{2}}) = \log_{16} 2^{\frac{3}{2}} = \log_{16} (16^{\frac{1}{4}})^3 = \log_{16} 16^{\frac{3}{4}} = \frac{3}{4}log16(22)=log16(2×221)=log16223=log16(1641)3=log161643=433. 最終的な答え(1) 2(2) 3(3) -2(4) 3(5) 3/2(6) -1(7) -2(8) 1/2(9) -1/2(10) 3/4