定積分 $S = \int_{1}^{\frac{8}{3}} \{ (\frac{1}{3}x + \frac{14}{3}) - (2x^2 - 7x + 10) \} dx$ を計算する。解析学積分定積分計算2025/6/181. 問題の内容定積分 S=∫183{(13x+143)−(2x2−7x+10)}dxS = \int_{1}^{\frac{8}{3}} \{ (\frac{1}{3}x + \frac{14}{3}) - (2x^2 - 7x + 10) \} dxS=∫138{(31x+314)−(2x2−7x+10)}dx を計算する。2. 解き方の手順まず、積分の中身を整理する。13x+143−2x2+7x−10=−2x2+(13+7)x+(143−10)=−2x2+223x+14−303=−2x2+223x−163\frac{1}{3}x + \frac{14}{3} - 2x^2 + 7x - 10 = -2x^2 + (\frac{1}{3} + 7)x + (\frac{14}{3} - 10) = -2x^2 + \frac{22}{3}x + \frac{14-30}{3} = -2x^2 + \frac{22}{3}x - \frac{16}{3}31x+314−2x2+7x−10=−2x2+(31+7)x+(314−10)=−2x2+322x+314−30=−2x2+322x−316よって、積分はS=∫183(−2x2+223x−163)dxS = \int_{1}^{\frac{8}{3}} (-2x^2 + \frac{22}{3}x - \frac{16}{3}) dxS=∫138(−2x2+322x−316)dx=[−23x3+113x2−163x]183= [-\frac{2}{3}x^3 + \frac{11}{3}x^2 - \frac{16}{3}x]_{1}^{\frac{8}{3}}=[−32x3+311x2−316x]138=[−23(83)3+113(83)2−163(83)]−[−23(1)3+113(1)2−163(1)]= [-\frac{2}{3}(\frac{8}{3})^3 + \frac{11}{3}(\frac{8}{3})^2 - \frac{16}{3}(\frac{8}{3})] - [-\frac{2}{3}(1)^3 + \frac{11}{3}(1)^2 - \frac{16}{3}(1)]=[−32(38)3+311(38)2−316(38)]−[−32(1)3+311(1)2−316(1)]=[−23⋅51227+113⋅649−1289]−[−23+113−163]= [-\frac{2}{3} \cdot \frac{512}{27} + \frac{11}{3} \cdot \frac{64}{9} - \frac{128}{9}] - [-\frac{2}{3} + \frac{11}{3} - \frac{16}{3}]=[−32⋅27512+311⋅964−9128]−[−32+311−316]=[−102481+70427−1289]−[−2+11−163]=[−102481+211281−115281]−[−73]= [-\frac{1024}{81} + \frac{704}{27} - \frac{128}{9}] - [\frac{-2+11-16}{3}] = [-\frac{1024}{81} + \frac{2112}{81} - \frac{1152}{81}] - [\frac{-7}{3}]=[−811024+27704−9128]−[3−2+11−16]=[−811024+812112−811152]−[3−7]=−1024+2112−115281+73=−6481+18981=12581= \frac{-1024 + 2112 - 1152}{81} + \frac{7}{3} = \frac{-64}{81} + \frac{189}{81} = \frac{125}{81}=81−1024+2112−1152+37=81−64+81189=811253. 最終的な答え12581\frac{125}{81}81125