与えられた5つの二次式を平方完成する。代数学二次式平方完成二次関数2025/6/181. 問題の内容与えられた5つの二次式を平方完成する。2. 解き方の手順平方完成は、二次式を (ax+b)2+c(ax + b)^2 + c(ax+b)2+c の形に変形することです。(1) x2+6xx^2 + 6xx2+6xx2+6x=(x+3)2−32=(x+3)2−9x^2 + 6x = (x + 3)^2 - 3^2 = (x+3)^2 - 9x2+6x=(x+3)2−32=(x+3)2−9(2) x2−5xx^2 - 5xx2−5xx2−5x=(x−52)2−(52)2=(x−52)2−254x^2 - 5x = (x - \frac{5}{2})^2 - (\frac{5}{2})^2 = (x - \frac{5}{2})^2 - \frac{25}{4}x2−5x=(x−25)2−(25)2=(x−25)2−425(3) 2x2+2x2x^2 + 2x2x2+2x2x2+2x=2(x2+x)=2((x+12)2−(12)2)=2(x+12)2−2(14)=2(x+12)2−122x^2 + 2x = 2(x^2 + x) = 2((x + \frac{1}{2})^2 - (\frac{1}{2})^2) = 2(x + \frac{1}{2})^2 - 2(\frac{1}{4}) = 2(x + \frac{1}{2})^2 - \frac{1}{2}2x2+2x=2(x2+x)=2((x+21)2−(21)2)=2(x+21)2−2(41)=2(x+21)2−21(4) −3x2+2x-3x^2 + 2x−3x2+2x−3x2+2x=−3(x2−23x)=−3((x−13)2−(13)2)=−3(x−13)2+3(19)=−3(x−13)2+13-3x^2 + 2x = -3(x^2 - \frac{2}{3}x) = -3((x - \frac{1}{3})^2 - (\frac{1}{3})^2) = -3(x - \frac{1}{3})^2 + 3(\frac{1}{9}) = -3(x - \frac{1}{3})^2 + \frac{1}{3}−3x2+2x=−3(x2−32x)=−3((x−31)2−(31)2)=−3(x−31)2+3(91)=−3(x−31)2+31(5) 2x2+3x−12x^2 + 3x - 12x2+3x−12x2+3x−1=2(x2+32x)−1=2((x+34)2−(34)2)−1=2(x+34)2−2(916)−1=2(x+34)2−98−1=2(x+34)2−1782x^2 + 3x - 1 = 2(x^2 + \frac{3}{2}x) - 1 = 2((x + \frac{3}{4})^2 - (\frac{3}{4})^2) - 1 = 2(x + \frac{3}{4})^2 - 2(\frac{9}{16}) - 1 = 2(x + \frac{3}{4})^2 - \frac{9}{8} - 1 = 2(x + \frac{3}{4})^2 - \frac{17}{8}2x2+3x−1=2(x2+23x)−1=2((x+43)2−(43)2)−1=2(x+43)2−2(169)−1=2(x+43)2−89−1=2(x+43)2−8173. 最終的な答え(1) (x+3)2−9(x+3)^2 - 9(x+3)2−9(2) (x−52)2−254(x - \frac{5}{2})^2 - \frac{25}{4}(x−25)2−425(3) 2(x+12)2−122(x + \frac{1}{2})^2 - \frac{1}{2}2(x+21)2−21(4) −3(x−13)2+13-3(x - \frac{1}{3})^2 + \frac{1}{3}−3(x−31)2+31(5) 2(x+34)2−1782(x + \frac{3}{4})^2 - \frac{17}{8}2(x+43)2−817