$\sum_{k=2}^{n} k(k-1)$ を計算する問題です。代数学数列シグマ計算公式2025/6/181. 問題の内容∑k=2nk(k−1)\sum_{k=2}^{n} k(k-1)∑k=2nk(k−1) を計算する問題です。2. 解き方の手順まず、k(k−1)=k2−kk(k-1) = k^2 - kk(k−1)=k2−k と変形します。次に、∑k=2nk2−k=∑k=2nk2−∑k=2nk\sum_{k=2}^{n} k^2 - k = \sum_{k=2}^{n} k^2 - \sum_{k=2}^{n} k∑k=2nk2−k=∑k=2nk2−∑k=2nk と分解します。∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1) および ∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1) を用います。∑k=2nk=∑k=1nk−1=n(n+1)2−1\sum_{k=2}^{n} k = \sum_{k=1}^{n} k - 1 = \frac{n(n+1)}{2} - 1∑k=2nk=∑k=1nk−1=2n(n+1)−1∑k=2nk2=∑k=1nk2−1=n(n+1)(2n+1)6−1\sum_{k=2}^{n} k^2 = \sum_{k=1}^{n} k^2 - 1 = \frac{n(n+1)(2n+1)}{6} - 1∑k=2nk2=∑k=1nk2−1=6n(n+1)(2n+1)−1したがって、∑k=2nk(k−1)=∑k=2nk2−∑k=2nk=n(n+1)(2n+1)6−1−(n(n+1)2−1)\sum_{k=2}^{n} k(k-1) = \sum_{k=2}^{n} k^2 - \sum_{k=2}^{n} k = \frac{n(n+1)(2n+1)}{6} - 1 - (\frac{n(n+1)}{2} - 1)∑k=2nk(k−1)=∑k=2nk2−∑k=2nk=6n(n+1)(2n+1)−1−(2n(n+1)−1)=n(n+1)(2n+1)6−n(n+1)2= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}=6n(n+1)(2n+1)−2n(n+1)=n(n+1)(2n+1)−3n(n+1)6=n(n+1)(2n+1−3)6= \frac{n(n+1)(2n+1) - 3n(n+1)}{6} = \frac{n(n+1)(2n+1 - 3)}{6}=6n(n+1)(2n+1)−3n(n+1)=6n(n+1)(2n+1−3)=n(n+1)(2n−2)6=2n(n+1)(n−1)6=n(n+1)(n−1)3= \frac{n(n+1)(2n-2)}{6} = \frac{2n(n+1)(n-1)}{6} = \frac{n(n+1)(n-1)}{3}=6n(n+1)(2n−2)=62n(n+1)(n−1)=3n(n+1)(n−1)=n(n2−1)3=n3−n3= \frac{n(n^2-1)}{3} = \frac{n^3 - n}{3}=3n(n2−1)=3n3−n3. 最終的な答えn(n+1)(n−1)3=n3−n3\frac{n(n+1)(n-1)}{3} = \frac{n^3 - n}{3}3n(n+1)(n−1)=3n3−n