与えられた4組のベクトルA, Bについて、それぞれのベクトル積 $A \times B$ を求める問題です。応用数学ベクトルベクトル積線形代数2025/6/191. 問題の内容与えられた4組のベクトルA, Bについて、それぞれのベクトル積 A×BA \times BA×B を求める問題です。2. 解き方の手順ベクトル積は、各成分の行列式として計算できます。つまり、A=axi+ayj+azkA = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}A=axi+ayj+azk、B=bxi+byj+bzkB = b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}B=bxi+byj+bzkのとき、A×BA \times BA×B は次のようになります。A×B=∣ijkaxayazbxbybz∣=(aybz−azby)i−(axbz−azbx)j+(axby−aybx)kA \times B = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - a_z b_y) \mathbf{i} - (a_x b_z - a_z b_x) \mathbf{j} + (a_x b_y - a_y b_x) \mathbf{k}A×B=iaxbxjaybykazbz=(aybz−azby)i−(axbz−azbx)j+(axby−aybx)kこの公式を用いて、各組のベクトル積を計算します。i\mathbf{i}i, j\mathbf{j}j, k\mathbf{k}k はそれぞれ axa_xax, aya_yay, aza_zaz に置き換えて計算します。(1) A=2ax+ayA = 2a_x + a_yA=2ax+ay, B=ax+ay+azB = a_x + a_y + a_zB=ax+ay+azA×B=∣axayaz210111∣=(1⋅1−0⋅1)ax−(2⋅1−0⋅1)ay+(2⋅1−1⋅1)az=ax−2ay+azA \times B = \begin{vmatrix} a_x & a_y & a_z \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = (1 \cdot 1 - 0 \cdot 1) a_x - (2 \cdot 1 - 0 \cdot 1) a_y + (2 \cdot 1 - 1 \cdot 1) a_z = a_x - 2a_y + a_zA×B=ax21ay11az01=(1⋅1−0⋅1)ax−(2⋅1−0⋅1)ay+(2⋅1−1⋅1)az=ax−2ay+az(2) A=2ax−3ay+2azA = 2a_x - 3a_y + 2a_zA=2ax−3ay+2az, B=−ax+azB = -a_x + a_zB=−ax+azA×B=∣axayaz2−32−101∣=(−3⋅1−2⋅0)ax−(2⋅1−2⋅(−1))ay+(2⋅0−(−3)⋅(−1))az=−3ax−4ay−3azA \times B = \begin{vmatrix} a_x & a_y & a_z \\ 2 & -3 & 2 \\ -1 & 0 & 1 \end{vmatrix} = (-3 \cdot 1 - 2 \cdot 0) a_x - (2 \cdot 1 - 2 \cdot (-1)) a_y + (2 \cdot 0 - (-3) \cdot (-1)) a_z = -3a_x - 4a_y - 3a_zA×B=ax2−1ay−30az21=(−3⋅1−2⋅0)ax−(2⋅1−2⋅(−1))ay+(2⋅0−(−3)⋅(−1))az=−3ax−4ay−3az(3) A=−3ax+2ay+azA = -3a_x + 2a_y + a_zA=−3ax+2ay+az, B=ax+2ay−azB = a_x + 2a_y - a_zB=ax+2ay−azA×B=∣axayaz−32112−1∣=(2⋅(−1)−1⋅2)ax−((−3)⋅(−1)−1⋅1)ay+((−3)⋅2−2⋅1)az=−4ax−2ay−8azA \times B = \begin{vmatrix} a_x & a_y & a_z \\ -3 & 2 & 1 \\ 1 & 2 & -1 \end{vmatrix} = (2 \cdot (-1) - 1 \cdot 2) a_x - ((-3) \cdot (-1) - 1 \cdot 1) a_y + ((-3) \cdot 2 - 2 \cdot 1) a_z = -4a_x - 2a_y - 8a_zA×B=ax−31ay22az1−1=(2⋅(−1)−1⋅2)ax−((−3)⋅(−1)−1⋅1)ay+((−3)⋅2−2⋅1)az=−4ax−2ay−8az(4) A=−2ax−2ay+4azA = -2a_x - 2a_y + 4a_zA=−2ax−2ay+4az, B=12ax−ay+3azB = \frac{1}{2}a_x - a_y + 3a_zB=21ax−ay+3azA×B=∣axayaz−2−2412−13∣=((−2)⋅3−4⋅(−1))ax−((−2)⋅3−4⋅12)ay+((−2)⋅(−1)−(−2)⋅12)az=−2ax+8ay+3azA \times B = \begin{vmatrix} a_x & a_y & a_z \\ -2 & -2 & 4 \\ \frac{1}{2} & -1 & 3 \end{vmatrix} = ((-2) \cdot 3 - 4 \cdot (-1)) a_x - ((-2) \cdot 3 - 4 \cdot \frac{1}{2}) a_y + ((-2) \cdot (-1) - (-2) \cdot \frac{1}{2}) a_z = -2a_x + 8a_y + 3a_zA×B=ax−221ay−2−1az43=((−2)⋅3−4⋅(−1))ax−((−2)⋅3−4⋅21)ay+((−2)⋅(−1)−(−2)⋅21)az=−2ax+8ay+3az3. 最終的な答え(1) A×B=ax−2ay+azA \times B = a_x - 2a_y + a_zA×B=ax−2ay+az(2) A×B=−3ax−4ay−3azA \times B = -3a_x - 4a_y - 3a_zA×B=−3ax−4ay−3az(3) A×B=−4ax−2ay−8azA \times B = -4a_x - 2a_y - 8a_zA×B=−4ax−2ay−8az(4) A×B=−2ax+8ay+3azA \times B = -2a_x + 8a_y + 3a_zA×B=−2ax+8ay+3az