半径 $a$ の球の表面積が $4 \pi a^2$ で与えられることを、球面の方程式 $x^2 + y^2 + z^2 = a^2$ を用いて示す。解析学積分表面積極座標ベクトル解析2025/6/191. 問題の内容半径 aaa の球の表面積が 4πa24 \pi a^24πa2 で与えられることを、球面の方程式 x2+y2+z2=a2x^2 + y^2 + z^2 = a^2x2+y2+z2=a2 を用いて示す。2. 解き方の手順球面の方程式 x2+y2+z2=a2x^2 + y^2 + z^2 = a^2x2+y2+z2=a2 を用いて、球面の表面積を計算する。極座標変換を行う。x=asinθcosϕx = a \sin\theta \cos\phix=asinθcosϕy=asinθsinϕy = a \sin\theta \sin\phiy=asinθsinϕz=acosθz = a \cos\thetaz=acosθここで、0≤θ≤π0 \leq \theta \leq \pi0≤θ≤π0≤ϕ≤2π0 \leq \phi \leq 2\pi0≤ϕ≤2π位置ベクトル r⃗(θ,ϕ)\vec{r}(\theta, \phi)r(θ,ϕ) は、r⃗(θ,ϕ)=(asinθcosϕ,asinθsinϕ,acosθ)\vec{r}(\theta, \phi) = (a \sin\theta \cos\phi, a \sin\theta \sin\phi, a \cos\theta)r(θ,ϕ)=(asinθcosϕ,asinθsinϕ,acosθ)面積素 dSdSdS は、dS=∣∂r⃗∂θ×∂r⃗∂ϕ∣dθdϕdS = |\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \phi}| d\theta d\phidS=∣∂θ∂r×∂ϕ∂r∣dθdϕ∂r⃗∂θ=(acosθcosϕ,acosθsinϕ,−asinθ)\frac{\partial \vec{r}}{\partial \theta} = (a \cos\theta \cos\phi, a \cos\theta \sin\phi, -a \sin\theta)∂θ∂r=(acosθcosϕ,acosθsinϕ,−asinθ)∂r⃗∂ϕ=(−asinθsinϕ,asinθcosϕ,0)\frac{\partial \vec{r}}{\partial \phi} = (-a \sin\theta \sin\phi, a \sin\theta \cos\phi, 0)∂ϕ∂r=(−asinθsinϕ,asinθcosϕ,0)∂r⃗∂θ×∂r⃗∂ϕ=(a2sin2θcosϕ,a2sin2θsinϕ,a2sinθcosθ)\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \phi} = (a^2 \sin^2\theta \cos\phi, a^2 \sin^2\theta \sin\phi, a^2 \sin\theta \cos\theta)∂θ∂r×∂ϕ∂r=(a2sin2θcosϕ,a2sin2θsinϕ,a2sinθcosθ)∣∂r⃗∂θ×∂r⃗∂ϕ∣=(a2sin2θcosϕ)2+(a2sin2θsinϕ)2+(a2sinθcosθ)2|\frac{\partial \vec{r}}{\partial \theta} \times \frac{\partial \vec{r}}{\partial \phi}| = \sqrt{(a^2 \sin^2\theta \cos\phi)^2 + (a^2 \sin^2\theta \sin\phi)^2 + (a^2 \sin\theta \cos\theta)^2}∣∂θ∂r×∂ϕ∂r∣=(a2sin2θcosϕ)2+(a2sin2θsinϕ)2+(a2sinθcosθ)2=a4sin4θ(cos2ϕ+sin2ϕ)+a4sin2θcos2θ= \sqrt{a^4 \sin^4\theta (\cos^2\phi + \sin^2\phi) + a^4 \sin^2\theta \cos^2\theta}=a4sin4θ(cos2ϕ+sin2ϕ)+a4sin2θcos2θ=a4sin4θ+a4sin2θcos2θ= \sqrt{a^4 \sin^4\theta + a^4 \sin^2\theta \cos^2\theta}=a4sin4θ+a4sin2θcos2θ=a4sin2θ(sin2θ+cos2θ)= \sqrt{a^4 \sin^2\theta (\sin^2\theta + \cos^2\theta)}=a4sin2θ(sin2θ+cos2θ)=a4sin2θ= \sqrt{a^4 \sin^2\theta}=a4sin2θ=a2sinθ= a^2 \sin\theta=a2sinθdS=a2sinθdθdϕdS = a^2 \sin\theta d\theta d\phidS=a2sinθdθdϕ表面積 SSS は、S=∫02π∫0πa2sinθdθdϕS = \int_0^{2\pi} \int_0^{\pi} a^2 \sin\theta d\theta d\phiS=∫02π∫0πa2sinθdθdϕ=a2∫02πdϕ∫0πsinθdθ= a^2 \int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta d\theta=a2∫02πdϕ∫0πsinθdθ=a2[ϕ]02π[−cosθ]0π= a^2 [\phi]_0^{2\pi} [-\cos\theta]_0^{\pi}=a2[ϕ]02π[−cosθ]0π=a2(2π)(−cosπ+cos0)= a^2 (2\pi) (-\cos\pi + \cos 0)=a2(2π)(−cosπ+cos0)=a2(2π)(−(−1)+1)= a^2 (2\pi) (-(-1) + 1)=a2(2π)(−(−1)+1)=a2(2π)(2)= a^2 (2\pi) (2)=a2(2π)(2)=4πa2= 4\pi a^2=4πa23. 最終的な答え4πa24\pi a^24πa2