与えられた二次方程式 $x^2 - 6x + 9 = 0$ を解く問題です。

代数学二次方程式因数分解解の公式
2025/6/19

1. 問題の内容

与えられた二次方程式 x26x+9=0x^2 - 6x + 9 = 0 を解く問題です。

2. 解き方の手順

この二次方程式は因数分解を用いて解くことができます。
与えられた式は
x26x+9=0x^2 - 6x + 9 = 0
これは (x3)2=0(x - 3)^2 = 0 と因数分解できます。
(x3)(x3)=0(x - 3)(x - 3) = 0
したがって、x3=0x - 3 = 0 となります。
x=3x = 3

3. 最終的な答え

x=3x = 3

「代数学」の関連問題

放物線 $y = x^2 + 3x - 4$ を平行移動したもので、点 $(2, 3)$ を通り、頂点が直線 $y = x + 1$ 上にある放物線の方程式を求める問題です。

放物線平行移動二次関数頂点連立方程式
2025/6/19

ベクトル $\vec{a}+\vec{b} = (1, 4)$ と $\vec{a}-2\vec{b} = (4, -5)$ が与えられたとき、ベクトル $2\vec{a}-\vec{b}$ の大きさ...

ベクトルベクトルの演算ベクトルの大きさ連立方程式
2025/6/19

与えられた画像には、二次方程式を解く問題と、不等式の性質に関する問題が含まれています。 * (5) 二次方程式 $3x^2 - 2x - 1 = 0$ を因数分解で解く問題。 * (6) 二次...

二次方程式因数分解解の公式不等式
2025/6/19

画像にある不等式の問題に答えます。 (1) $a+10 > b+10$ のとき、$a$ と $b$ の大小関係を求めます。 (2) $a-15 < b-15$ のとき、$a$ と $b$ の大小関係を...

不等式大小関係一次不等式
2025/6/19

放物線 $y=x^2 + ax + 2$ の頂点が、直線 $y = 2x + 3$ 上にあるとき、定数 $a$ の値を求める問題です。

二次関数放物線頂点平方完成二次方程式
2025/6/19

ベクトル $\vec{a} = (1, -2)$ とベクトル $\vec{b} = (-3, 1)$ の内積 $\vec{a} \cdot \vec{b}$ を求めます。

ベクトル内積線形代数
2025/6/19

与えられた二次方程式を解き、空欄に当てはまる数や文字を答える問題です。 (1) $x^2 - 2 = 2$ (2) $x^2 + 5x + 4 = 0$ (3) $x^2 - x - 12 = 0$ ...

二次方程式因数分解解の公式代入
2025/6/19

画像にある3つの問題のうち、(3)の方程式、(2)の不等式、(3)の不等式についてそれぞれ答えます。 * (3) 4x-2 = 6x + 8 を解く問題です。 * (2) a > ...

一次方程式不等式不等号
2025/6/19

(1) 放物線 $y = -3x^2 + 4x + 7$ を平行移動したもので、2点 $(1, 1)$ と $(2, -8)$ を通る2次関数を求める。 (2) $x$軸方向に1、$y$軸方向に-3だ...

二次関数放物線平行移動連立方程式
2025/6/19

与えられた行列の階数(ランク)を求めます。行列は次の通りです。 $ \begin{pmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\...

線形代数行列階数ランク
2025/6/19