与えられた式 $(a-1)x - (a-1)$ を因数分解します。

代数学因数分解多項式
2025/6/19

1. 問題の内容

与えられた式 (a1)x(a1)(a-1)x - (a-1) を因数分解します。

2. 解き方の手順

この式には共通因数 (a1)(a-1) があります。
したがって、(a1)(a-1) で式全体を括ることができます。
(a1)(a-1)で括ると、以下のようになります。
(a1)x(a1)=(a1)(x1)(a-1)x - (a-1) = (a-1)(x-1)

3. 最終的な答え

(a1)(x1)(a-1)(x-1)

「代数学」の関連問題

不等式 $|x-1| \geq -2x$ を解きます。

不等式絶対値場合分け
2025/6/19

与えられた不等式を証明し、等号が成り立つ条件を求める問題です。ただし、$a, b$ は正の数とします。 (1) $\frac{a}{4} + \frac{9}{a} \geq 3$ (2) $(a +...

不等式相加相乗平均証明代数
2025/6/19

$x, y$ が実数であるとき、不等式 $x^2 + y^2 \ge xy$ を証明し、等号が成り立つ条件を求める問題です。

不等式証明実数等号成立条件
2025/6/19

複素数の足し算、引き算、掛け算、および二乗の計算を行う問題です。

複素数複素数の計算加算減算乗算二乗
2025/6/19

$a < -1$, $b < 1$ のとき、$ab > a - b + 1$ を証明する。

不等式証明因数分解代数
2025/6/19

$a$ が正の数であるとき、不等式 $\frac{a}{4} + \frac{9}{a} \geq 3$ を証明し、等号が成り立つ条件を求めます。

不等式相加平均・相乗平均証明数式
2025/6/19

与えられた複素数の計算問題を解いてください。全部で9問あります。 (1) $i+5i$ (2) $(2+3i)+(5+8i)$ (3) $(8+3i)-(4+6i)$ (4) $(2+i)-(4-3i...

複素数複素数の計算加算減算乗算二乗
2025/6/19

1. 複素数の実部と虚部を求める問題 - (1) $2+i$ - (2) $\frac{2 - \sqrt{2}i}{3}$ - (3) $-2i$

複素数実部虚部複素数の相等
2025/6/19

与えられた等式 $(2x-y) + (x+2y)i = 4 - 3i$ を満たす実数 $x$ と $y$ の値を求める問題です。

複素数連立方程式実数虚数
2025/6/19

与えられた方程式は絶対値を含む方程式 $\vert x-3 \vert = 4x$ です。この方程式を満たす $x$ の値を求めます。

絶対値方程式場合分け
2025/6/19