曲線 $y = x^3 - x$ 上の点 $(1, 0)$ における接線の方程式を求める問題です。

解析学微分接線導関数関数のグラフ
2025/6/19

1. 問題の内容

曲線 y=x3xy = x^3 - x 上の点 (1,0)(1, 0) における接線の方程式を求める問題です。

2. 解き方の手順

ステップ1: 導関数を求める。
y=x3xy = x^3 - xxx で微分して導関数 yy' を求めます。
y=dydx=3x21y' = \frac{dy}{dx} = 3x^2 - 1
ステップ2: 接線の傾きを求める。
(1,0)(1, 0) における接線の傾きは、x=1x = 1yy' に代入することで求められます。
y(1)=3(1)21=31=2y'(1) = 3(1)^2 - 1 = 3 - 1 = 2
したがって、接線の傾きは2です。
ステップ3: 接線の方程式を求める。
(1,0)(1, 0) を通り、傾きが2の直線の方程式を求めます。直線の方程式は、yy1=m(xx1)y - y_1 = m(x - x_1) で表されます。ここで、(x1,y1)=(1,0)(x_1, y_1) = (1, 0) であり、m=2m = 2 です。
y0=2(x1)y - 0 = 2(x - 1)
y=2x2y = 2x - 2

3. 最終的な答え

求める接線の方程式は y=2x2y = 2x - 2 です。

「解析学」の関連問題

関数 $y = \sin x - \sqrt{3} \cos x$ ($0 \le x < 2\pi$) について、以下の問いに答えます。 (1) 関数の最大値、最小値と、そのときの $x$ の値を求...

三角関数関数の合成最大値最小値不等式
2025/6/19

問題2では、$0 \le \theta < 2\pi$ のとき、方程式 $\sin(\theta - \frac{2}{3}\pi) = -\frac{1}{2}$ を解き、空欄を埋めます。 問題3で...

三角関数三角方程式三角不等式
2025/6/19

$0 \le \theta < 2\pi$ のとき、次の方程式を解く問題です。 (1) $\sin \theta = \frac{1}{\sqrt{2}}$ (2) $\cos \theta = -\...

三角関数方程式三角方程式角度
2025/6/19

与えられた3つの関数 $y = 2\sin\theta$、$y = \sin(\theta + \frac{\pi}{3})$、$y = \cos2\theta$ について、それぞれグラフの概形を、選...

三角関数グラフ周期振幅
2025/6/19

次の微分を計算します。 $\frac{d}{dt} \left[ \left( 5 + \frac{d}{dt} \right) \left( \sin(5t-2) - \cos(5t-2) \rig...

微分三角関数
2025/6/19

三角関数の値を求める問題と、sinθとcosθのグラフに関する問題です。 具体的には、 (1) $\sin\frac{7}{3}\pi$ (2) $\tan(-\frac{\pi}{6})$ (3) ...

三角関数sincostan周期グラフ度数法
2025/6/19

$0 \le x < 2\pi$ の範囲で、以下の(1)方程式と(2)不等式を解く。 (1) $\sin 2x = \cos x$ (2) $2\cos 2x + 8\sin x - 5 \le 0$

三角関数方程式不等式三角関数の合成解の範囲
2025/6/19

与えられた関数について、$n$次導関数を求める問題です。ここでは、問題番号(6),(7),(8)を解きます。 (6) $y = x^2 \cos(2x)$ (7) $y = \frac{1}{x^2 ...

微分導関数ライプニッツの公式部分分数分解
2025/6/19

与えられた各関数のn次導関数(n ≥ 1)を求める問題です。ここでは、関数 (1) $y = \frac{1}{1+x}$、(2) $y = \log(1-x)$、(3) $y = (1+x)^a$、...

導関数微分ライプニッツの公式
2025/6/19

与えられた2つの極限値を求める問題です。 (1) $\lim_{x\to 2} \frac{\log(\cos(x-2))}{1-\sin(\frac{\pi x}{4})}$ (2) $\lim_{...

極限ロピタルの定理対数関数三角関数
2025/6/19