複素数 $z = \frac{1-\sqrt{3}i}{2}$ が与えられたとき、$z^3$, $z^{2018}$, $z^{2019}$, $z^{2020}$ の値を求める。代数学複素数極形式ド・モアブルの定理複素数の累乗2025/6/191. 問題の内容複素数 z=1−3i2z = \frac{1-\sqrt{3}i}{2}z=21−3i が与えられたとき、z3z^3z3, z2018z^{2018}z2018, z2019z^{2019}z2019, z2020z^{2020}z2020 の値を求める。2. 解き方の手順まず、zzz を極形式で表す。z=12−32iz = \frac{1}{2} - \frac{\sqrt{3}}{2}iz=21−23i であるから、zzz の絶対値 ∣z∣|z|∣z∣ は∣z∣=(12)2+(−32)2=14+34=1=1|z| = \sqrt{(\frac{1}{2})^2 + (-\frac{\sqrt{3}}{2})^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1∣z∣=(21)2+(−23)2=41+43=1=1zzz の偏角 θ\thetaθ は、cosθ=12,sinθ=−32\cos \theta = \frac{1}{2}, \sin \theta = -\frac{\sqrt{3}}{2}cosθ=21,sinθ=−23 を満たすので、θ=−π3\theta = -\frac{\pi}{3}θ=−3π となる。したがって、z=cos(−π3)+isin(−π3)=e−iπ3z = \cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3}) = e^{-i\frac{\pi}{3}}z=cos(−3π)+isin(−3π)=e−i3πド・モアブルの定理より、zn=cos(nθ)+isin(nθ)z^n = \cos(n\theta) + i\sin(n\theta)zn=cos(nθ)+isin(nθ) であるから、z3=cos(−π)+isin(−π)=−1z^3 = \cos(-\pi) + i\sin(-\pi) = -1z3=cos(−π)+isin(−π)=−1z2018=cos(−2018π3)+isin(−2018π3)z^{2018} = \cos(-\frac{2018\pi}{3}) + i\sin(-\frac{2018\pi}{3})z2018=cos(−32018π)+isin(−32018π)20183=672+23\frac{2018}{3} = 672 + \frac{2}{3}32018=672+32 より、 −2018π3=−672π−2π3-\frac{2018\pi}{3} = -672\pi - \frac{2\pi}{3}−32018π=−672π−32πよって、 z2018=cos(−2π3)+isin(−2π3)=cos(2π3)−isin(2π3)=−12−i32z^{2018} = \cos(-\frac{2\pi}{3}) + i\sin(-\frac{2\pi}{3}) = \cos(\frac{2\pi}{3}) - i\sin(\frac{2\pi}{3}) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}z2018=cos(−32π)+isin(−32π)=cos(32π)−isin(32π)=−21−i23z2019=cos(−2019π3)+isin(−2019π3)=cos(−673π)+isin(−673π)=cos(−π)+isin(−π)=−1z^{2019} = \cos(-\frac{2019\pi}{3}) + i\sin(-\frac{2019\pi}{3}) = \cos(-673\pi) + i\sin(-673\pi) = \cos(-\pi) + i\sin(-\pi) = -1z2019=cos(−32019π)+isin(−32019π)=cos(−673π)+isin(−673π)=cos(−π)+isin(−π)=−1z2020=cos(−2020π3)+isin(−2020π3)z^{2020} = \cos(-\frac{2020\pi}{3}) + i\sin(-\frac{2020\pi}{3})z2020=cos(−32020π)+isin(−32020π)20203=673+13\frac{2020}{3} = 673 + \frac{1}{3}32020=673+31 より、 −2020π3=−673π−π3-\frac{2020\pi}{3} = -673\pi - \frac{\pi}{3}−32020π=−673π−3πよって、z2020=cos(−π−π3)+isin(−π−π3)=cos(−4π3)+isin(−4π3)=cos(4π3)−isin(4π3)=−12+i32z^{2020} = \cos(-\pi-\frac{\pi}{3}) + i\sin(-\pi-\frac{\pi}{3}) = \cos(-\frac{4\pi}{3}) + i\sin(-\frac{4\pi}{3}) = \cos(\frac{4\pi}{3}) - i\sin(\frac{4\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}z2020=cos(−π−3π)+isin(−π−3π)=cos(−34π)+isin(−34π)=cos(34π)−isin(34π)=−21+i233. 最終的な答えz3=−1z^3 = -1z3=−1z2018=−12−32iz^{2018} = -\frac{1}{2} - \frac{\sqrt{3}}{2}iz2018=−21−23iz2019=−1z^{2019} = -1z2019=−1z2020=−12+32iz^{2020} = -\frac{1}{2} + \frac{\sqrt{3}}{2}iz2020=−21+23i