(1)
1.01×0.99+(0.01+100)2=(1+0.01)×(1−0.01)+(100.01)2=12−0.012+(100+0.01)2=1−0.0001+1002+2×100×0.01+0.012=1−0.0001+10000+2+0.0001=10003 (2)
19×21+202−40×19+192=(20−1)(20+1)+202−40×19+192=202−12+202−2×20×19+192=400−1+400−(20−19)2×202+192=(20−19)2+2(202)−40×19+192=400−1+400−760+361=400+400+361−761=400 別の解き方:
19×21+202−40×19+192=(20−1)(20+1)+202−40(20−1)+192=400−1+400−800+40+361=400 (3)
20143−20142×2013−20132=20142(2014−2013)−20132=20142−20132=(2014+2013)(2014−2013)=(2014+2013)(1)=4027 (4)
$2013^2 - 3 \times 2012^2 + 2 \times 2013 \times 2012 + 3 \times 2012 \times 2011 - 3 \times 2011 \times 2013 = 2013^2+2 \times 2013 \times 2012 - 3 \times 2012^2 + 3 \times 2012 \times 2011 - 3 \times 2011 \times 2013= (2013+2012)^2 - 4(2012)^2 - 3 \times 2011 \times (2013 - 2012) = (2013+2012) \times (2013+2012) -4(2012)^2 - 3 \times 2011= 4025^{2}-4 \times 2012^2-3 \times 2011 \times(2013 - 2012)= 2013^2 - 3 \times 2012^2 + 2 \times 2013 \times 2012 + 3 \times 2012 \times 2011 - 3 \times 2011 \times 2013 = 2013^2+2 \times 2013 \times 2012+ 2012^2-4 \times 2012^2 + 2 \times 2012 \times 2011 - 2 \times 2011 \times 2013 = (2013+2012)^{2}-4 \times 2012^2-2011(2 \times 2013-2 \times 2012) = (4025)^{2}-4 \times (2012^2)-4022 = (2013 + 2012)^{2}-4(2012^2) +3*2012 \times 2011-3 \times 2011 \times 2013
2013=x+1,2012=x,2011=x−1, よって、(x+1)2−3x2+2(x+1)x+3x(x−1)−3(x−1)(x+1)=(x2+2x+1)−3x2+2x2+2x+3x2−3x−3x2+3=−2x2+x+3−3=−2 20132−3∗20122+2×2013×2012+3×2012×2011−3×2011×2013=(20132+20122−2013∗2012+4025)−2(20122+2011)−2