数列 $\{a_n\}$ が漸化式 $a_1 = 1$, $a_{n+1} = 2a_n + n^2$ ($n=1, 2, 3, \dots$) で定義されているとき、一般項 $a_n$ を求める問題です。代数学漸化式数列一般項2025/6/201. 問題の内容数列 {an}\{a_n\}{an} が漸化式 a1=1a_1 = 1a1=1, an+1=2an+n2a_{n+1} = 2a_n + n^2an+1=2an+n2 (n=1,2,3,…n=1, 2, 3, \dotsn=1,2,3,…) で定義されているとき、一般項 ana_nan を求める問題です。2. 解き方の手順まず、an+1=2an+n2a_{n+1} = 2a_n + n^2an+1=2an+n2 の両辺を 2n+12^{n+1}2n+1 で割ります。an+12n+1=an2n+n22n+1\frac{a_{n+1}}{2^{n+1}} = \frac{a_n}{2^n} + \frac{n^2}{2^{n+1}}2n+1an+1=2nan+2n+1n2ここで、bn=an2nb_n = \frac{a_n}{2^n}bn=2nan とおくと、bn+1=bn+n22n+1b_{n+1} = b_n + \frac{n^2}{2^{n+1}}bn+1=bn+2n+1n2bn+1−bn=n22n+1b_{n+1} - b_n = \frac{n^2}{2^{n+1}}bn+1−bn=2n+1n2n≥2n \ge 2n≥2 のとき、bn=b1+∑k=1n−1(bk+1−bk)=b1+∑k=1n−1k22k+1b_n = b_1 + \sum_{k=1}^{n-1} (b_{k+1} - b_k) = b_1 + \sum_{k=1}^{n-1} \frac{k^2}{2^{k+1}}bn=b1+∑k=1n−1(bk+1−bk)=b1+∑k=1n−12k+1k2b1=a121=12b_1 = \frac{a_1}{2^1} = \frac{1}{2}b1=21a1=21したがって、bn=12+∑k=1n−1k22k+1b_n = \frac{1}{2} + \sum_{k=1}^{n-1} \frac{k^2}{2^{k+1}}bn=21+∑k=1n−12k+1k2∑k=1n−1k22k+1=12∑k=1n−1k22k\sum_{k=1}^{n-1} \frac{k^2}{2^{k+1}} = \frac{1}{2} \sum_{k=1}^{n-1} \frac{k^2}{2^k}∑k=1n−12k+1k2=21∑k=1n−12kk2ここで、S=∑k=1n−1k2xkS = \sum_{k=1}^{n-1} k^2 x^kS=∑k=1n−1k2xk を計算します (x=12x = \frac{1}{2}x=21)。S=x+4x2+9x3+⋯+(n−1)2xn−1S = x + 4x^2 + 9x^3 + \dots + (n-1)^2 x^{n-1}S=x+4x2+9x3+⋯+(n−1)2xn−1xS=x2+4x3+⋯+(n−2)2xn−1+(n−1)2xnxS = x^2 + 4x^3 + \dots + (n-2)^2 x^{n-1} + (n-1)^2 x^nxS=x2+4x3+⋯+(n−2)2xn−1+(n−1)2xnS−xS=x+3x2+5x3+⋯+(2n−3)xn−1−(n−1)2xnS - xS = x + 3x^2 + 5x^3 + \dots + (2n-3)x^{n-1} - (n-1)^2 x^nS−xS=x+3x2+5x3+⋯+(2n−3)xn−1−(n−1)2xn(1−x)S=∑k=1n−1(2k−1)xk−(n−1)2xn=2∑k=1n−1kxk−∑k=1n−1xk−(n−1)2xn(1-x)S = \sum_{k=1}^{n-1} (2k-1) x^k - (n-1)^2 x^n = 2\sum_{k=1}^{n-1} k x^k - \sum_{k=1}^{n-1} x^k - (n-1)^2 x^n(1−x)S=∑k=1n−1(2k−1)xk−(n−1)2xn=2∑k=1n−1kxk−∑k=1n−1xk−(n−1)2xn∑k=1n−1xk=x(1−xn−1)1−x\sum_{k=1}^{n-1} x^k = \frac{x(1-x^{n-1})}{1-x}∑k=1n−1xk=1−xx(1−xn−1)∑k=1n−1kxk=xddx∑k=1n−1xk=xddxx(1−xn−1)1−x=x(1−(n−1)xn−2)(1−x)−x(1−xn−1)(−1)(1−x)2\sum_{k=1}^{n-1} kx^k = x \frac{d}{dx} \sum_{k=1}^{n-1} x^k = x \frac{d}{dx} \frac{x(1-x^{n-1})}{1-x} = x \frac{(1-(n-1)x^{n-2})(1-x) - x(1-x^{n-1})(-1)}{(1-x)^2}∑k=1n−1kxk=xdxd∑k=1n−1xk=xdxd1−xx(1−xn−1)=x(1−x)2(1−(n−1)xn−2)(1−x)−x(1−xn−1)(−1)=x1−(n−1)xn−2−x+(n−1)xn−1+x−xn(1−x)2=x1−(n−1)xn−2+(n−1)xn−1−xn(1−x)2= x \frac{1-(n-1)x^{n-2} -x + (n-1)x^{n-1} + x - x^n}{(1-x)^2} = x \frac{1-(n-1)x^{n-2} + (n-1)x^{n-1} - x^n}{(1-x)^2}=x(1−x)21−(n−1)xn−2−x+(n−1)xn−1+x−xn=x(1−x)21−(n−1)xn−2+(n−1)xn−1−xnx=12x = \frac{1}{2}x=21 のとき、∑k=1n−1(12)k=12(1−(12)n−1)12=1−(12)n−1\sum_{k=1}^{n-1} (\frac{1}{2})^k = \frac{\frac{1}{2} (1-(\frac{1}{2})^{n-1})}{\frac{1}{2}} = 1 - (\frac{1}{2})^{n-1}∑k=1n−1(21)k=2121(1−(21)n−1)=1−(21)n−1∑k=1n−1k(12)k=121−(n−1)(12)n−3+(n−1)(12)n−2−(12)n−1(12)2=2−(n−1)(12)n−4+(n−1)(12)n−3−(12)n−2=2−n−12n−4+2(n−1)2n−3−42n−2=2−2n−22n−3+n−12n−3−22n−3=2−n+12n−3\sum_{k=1}^{n-1} k (\frac{1}{2})^k = \frac{1}{2} \frac{1-(n-1)(\frac{1}{2})^{n-3} + (n-1)(\frac{1}{2})^{n-2} - (\frac{1}{2})^{n-1}}{(\frac{1}{2})^2} = 2 - (n-1)(\frac{1}{2})^{n-4} + (n-1)(\frac{1}{2})^{n-3} - (\frac{1}{2})^{n-2} = 2 - \frac{n-1}{2^{n-4}} + \frac{2(n-1)}{2^{n-3}} - \frac{4}{2^{n-2}} = 2 - \frac{2n-2}{2^{n-3}} + \frac{n-1}{2^{n-3}} - \frac{2}{2^{n-3}} = 2 - \frac{n+1}{2^{n-3}}∑k=1n−1k(21)k=21(21)21−(n−1)(21)n−3+(n−1)(21)n−2−(21)n−1=2−(n−1)(21)n−4+(n−1)(21)n−3−(21)n−2=2−2n−4n−1+2n−32(n−1)−2n−24=2−2n−32n−2+2n−3n−1−2n−32=2−2n−3n+1(12)S=2(2−n+12n−3)−(1−(12)n−1)−(n−1)2(12)n(\frac{1}{2})S = 2 (2 - \frac{n+1}{2^{n-3}}) - (1 - (\frac{1}{2})^{n-1}) - (n-1)^2 (\frac{1}{2})^n(21)S=2(2−2n−3n+1)−(1−(21)n−1)−(n−1)2(21)n12S=4−n+12n−4−1+12n−1−(n−1)22n=3−2(n+1)2n−3+22n−(n−1)22n=3−2n+22n−3+2−(n2−2n+1)2n=3−2n+22n−3+−n2+2n+12n\frac{1}{2}S = 4 - \frac{n+1}{2^{n-4}} - 1 + \frac{1}{2^{n-1}} - \frac{(n-1)^2}{2^n} = 3 - \frac{2(n+1)}{2^{n-3}} + \frac{2}{2^n} - \frac{(n-1)^2}{2^n} = 3 - \frac{2n+2}{2^{n-3}} + \frac{2-(n^2-2n+1)}{2^n} = 3 - \frac{2n+2}{2^{n-3}} + \frac{-n^2+2n+1}{2^n}21S=4−2n−4n+1−1+2n−11−2n(n−1)2=3−2n−32(n+1)+2n2−2n(n−1)2=3−2n−32n+2+2n2−(n2−2n+1)=3−2n−32n+2+2n−n2+2n+1S=6−n2+2n+12n−1S = 6 - \frac{n^2+2n+1}{2^{n-1}}S=6−2n−1n2+2n+1bn=12+12∑k=1n−1k22k=12+12(6−n2+2n+12n−1)=72−n2+2n+12nb_n = \frac{1}{2} + \frac{1}{2} \sum_{k=1}^{n-1} \frac{k^2}{2^k} = \frac{1}{2} + \frac{1}{2} (6 - \frac{n^2 + 2n + 1}{2^{n-1}}) = \frac{7}{2} - \frac{n^2+2n+1}{2^n}bn=21+21∑k=1n−12kk2=21+21(6−2n−1n2+2n+1)=27−2nn2+2n+1an=2nbn=2n(72−n2+2n+12n)=7⋅2n−1−(n2+2n+1)a_n = 2^n b_n = 2^n (\frac{7}{2} - \frac{n^2+2n+1}{2^n}) = 7 \cdot 2^{n-1} - (n^2+2n+1)an=2nbn=2n(27−2nn2+2n+1)=7⋅2n−1−(n2+2n+1)an=7⋅2n−1−(n+1)2a_n = 7 \cdot 2^{n-1} - (n+1)^2an=7⋅2n−1−(n+1)23. 最終的な答えan=7⋅2n−1−(n+1)2a_n = 7 \cdot 2^{n-1} - (n+1)^2an=7⋅2n−1−(n+1)2