$\sum_{k=0}^{n} \frac{(-1)^k {}_n C_k}{(k+1)(k+3)}$ を $n$ の式で表す。代数学シグマ二項係数部分分数分解組み合わせ2025/6/201. 問題の内容∑k=0n(−1)knCk(k+1)(k+3)\sum_{k=0}^{n} \frac{(-1)^k {}_n C_k}{(k+1)(k+3)}∑k=0n(k+1)(k+3)(−1)knCk を nnn の式で表す。2. 解き方の手順まず、1(k+1)(k+3)\frac{1}{(k+1)(k+3)}(k+1)(k+3)1 を部分分数分解します。1(k+1)(k+3)=Ak+1+Bk+3 \frac{1}{(k+1)(k+3)} = \frac{A}{k+1} + \frac{B}{k+3} (k+1)(k+3)1=k+1A+k+3B1=A(k+3)+B(k+1)1 = A(k+3) + B(k+1)1=A(k+3)+B(k+1) を満たす AAA と BBB を求めます。k=−1k = -1k=−1 のとき 1=2A1 = 2A1=2A なので A=12A = \frac{1}{2}A=21.k=−3k = -3k=−3 のとき 1=−2B1 = -2B1=−2B なので B=−12B = -\frac{1}{2}B=−21.したがって、1(k+1)(k+3)=12(1k+1−1k+3) \frac{1}{(k+1)(k+3)} = \frac{1}{2} \left( \frac{1}{k+1} - \frac{1}{k+3} \right) (k+1)(k+3)1=21(k+11−k+31)与えられた式は∑k=0n(−1)knCk(k+1)(k+3)=12∑k=0n(−1)knCk(1k+1−1k+3) \sum_{k=0}^{n} \frac{(-1)^k {}_n C_k}{(k+1)(k+3)} = \frac{1}{2} \sum_{k=0}^{n} (-1)^k {}_n C_k \left( \frac{1}{k+1} - \frac{1}{k+3} \right) k=0∑n(k+1)(k+3)(−1)knCk=21k=0∑n(−1)knCk(k+11−k+31)ここで、nCk=n!k!(n−k)!{}_n C_k = \frac{n!}{k!(n-k)!}nCk=k!(n−k)!n! を用いてnCkk+1=n!(k+1)!(n−k)!=1n+1(n+1)!(k+1)!((n+1)−(k+1))!=1n+1n+1Ck+1 \frac{{}_n C_k}{k+1} = \frac{n!}{(k+1)!(n-k)!} = \frac{1}{n+1} \frac{(n+1)!}{(k+1)!((n+1)-(k+1))!} = \frac{1}{n+1} {}_{n+1} C_{k+1} k+1nCk=(k+1)!(n−k)!n!=n+11(k+1)!((n+1)−(k+1))!(n+1)!=n+11n+1Ck+1同様にnCkk+3=n!(k+3)!(n−k)!=n!(k+3)!(n−k)!(n+1)(n+2)(n+3)(n+1)(n+2)(n+3)=(n+3)!(k+3)!(n−k)!(n+1)(n+2)(n+3)=n+3Ck+3(n+1)(n+2)(n+3) \frac{{}_n C_k}{k+3} = \frac{n!}{(k+3)!(n-k)!} = \frac{n!}{(k+3)!(n-k)!} \frac{(n+1)(n+2)(n+3)}{(n+1)(n+2)(n+3)} = \frac{(n+3)!}{(k+3)!(n-k)!(n+1)(n+2)(n+3)} = \frac{{}_{n+3}C_{k+3}}{(n+1)(n+2)(n+3)}k+3nCk=(k+3)!(n−k)!n!=(k+3)!(n−k)!n!(n+1)(n+2)(n+3)(n+1)(n+2)(n+3)=(k+3)!(n−k)!(n+1)(n+2)(n+3)(n+3)!=(n+1)(n+2)(n+3)n+3Ck+3nCkk+3=6(n+1)(n+2)(n+3)(n+3)!6(k+3)!(n−k)! \frac{{}_n C_k}{k+3} = \frac{6}{(n+1)(n+2)(n+3)} \frac{(n+3)!}{6(k+3)!(n-k)!} k+3nCk=(n+1)(n+2)(n+3)66(k+3)!(n−k)!(n+3)!ここで、nCkk+3=n+3Ck+3(k+3)!(n−k)!(n+3)!n!(n+1)(n+2)(n+3) \frac{{}_n C_k}{k+3} = \frac{{}_{n+3} C_{k+3} \frac{(k+3)!(n-k)!}{(n+3)!} n!}{(n+1)(n+2)(n+3)} k+3nCk=(n+1)(n+2)(n+3)n+3Ck+3(n+3)!(k+3)!(n−k)!n!次に∑k=0n(−1)kn+1Ck+1n+1=1n+1∑k=0n(−1)kn+1Ck+1 \sum_{k=0}^{n} \frac{(-1)^k {}_{n+1} C_{k+1}}{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} (-1)^k {}_{n+1} C_{k+1} k=0∑nn+1(−1)kn+1Ck+1=n+11k=0∑n(−1)kn+1Ck+1j=k+1j = k+1j=k+1 とすると k=j−1k = j-1k=j−1 であり k=0k=0k=0 のとき j=1j=1j=1 , k=nk=nk=n のとき j=n+1j=n+1j=n+1.1n+1∑j=1n+1(−1)j−1n+1Cj=−1n+1∑j=1n+1(−1)jn+1Cj=−1n+1(∑j=0n+1(−1)jn+1Cj−n+1C0) \frac{1}{n+1} \sum_{j=1}^{n+1} (-1)^{j-1} {}_{n+1} C_{j} = \frac{-1}{n+1} \sum_{j=1}^{n+1} (-1)^{j} {}_{n+1} C_{j} = \frac{-1}{n+1} \left( \sum_{j=0}^{n+1} (-1)^{j} {}_{n+1} C_{j} - {}_{n+1} C_0 \right) n+11j=1∑n+1(−1)j−1n+1Cj=n+1−1j=1∑n+1(−1)jn+1Cj=n+1−1(j=0∑n+1(−1)jn+1Cj−n+1C0)二項定理より、∑j=0n+1(−1)jn+1Cj=(1−1)n+1=0\sum_{j=0}^{n+1} (-1)^{j} {}_{n+1} C_{j} = (1-1)^{n+1} = 0∑j=0n+1(−1)jn+1Cj=(1−1)n+1=0 なので、−1n+1(0−1)=1n+1 \frac{-1}{n+1}(0 - 1) = \frac{1}{n+1} n+1−1(0−1)=n+11∑k=0n(−1)kn+3Ck+3(n+1)(n+2)(n+3)=1(n+1)(n+2)(n+3)∑k=0n(−1)kn+3Ck+3 \sum_{k=0}^{n} \frac{(-1)^k {}_{n+3} C_{k+3}}{(n+1)(n+2)(n+3)} = \frac{1}{(n+1)(n+2)(n+3)} \sum_{k=0}^{n} (-1)^k {}_{n+3} C_{k+3} k=0∑n(n+1)(n+2)(n+3)(−1)kn+3Ck+3=(n+1)(n+2)(n+3)1k=0∑n(−1)kn+3Ck+3j=k+3j = k+3j=k+3 とおくと k=j−3k = j-3k=j−3. k=0k=0k=0 のとき j=3j=3j=3, k=nk=nk=n のとき j=n+3j=n+3j=n+3=1(n+1)(n+2)(n+3)∑j=3n+3(−1)j−3n+3Cj=1(n+1)(n+2)(n+3)∑j=3n+3(−1)j−3n+3Cj = \frac{1}{(n+1)(n+2)(n+3)} \sum_{j=3}^{n+3} (-1)^{j-3} {}_{n+3} C_{j} = \frac{1}{(n+1)(n+2)(n+3)} \sum_{j=3}^{n+3} (-1)^{j-3} {}_{n+3} C_{j} =(n+1)(n+2)(n+3)1j=3∑n+3(−1)j−3n+3Cj=(n+1)(n+2)(n+3)1j=3∑n+3(−1)j−3n+3Cj(−1)k=(−1)j−3=(−1)j(−1)−3=−(−1)j (-1)^k = (-1)^{j-3} = (-1)^j (-1)^{-3} = - (-1)^j (−1)k=(−1)j−3=(−1)j(−1)−3=−(−1)j∑j=3n+3(−1)j−3n+3Cj=−∑j=3n+3(−1)jn+3Cj=−(∑j=0n+3(−1)jn+3Cj−n+3C0+n+3C1−n+3C2) \sum_{j=3}^{n+3} (-1)^{j-3} {}_{n+3} C_{j} = - \sum_{j=3}^{n+3} (-1)^{j} {}_{n+3} C_{j} = - \left( \sum_{j=0}^{n+3} (-1)^{j} {}_{n+3} C_{j} - {}_{n+3} C_{0} + {}_{n+3} C_{1} - {}_{n+3} C_{2} \right) j=3∑n+3(−1)j−3n+3Cj=−j=3∑n+3(−1)jn+3Cj=−(j=0∑n+3(−1)jn+3Cj−n+3C0+n+3C1−n+3C2)=−(0−1+(n+3)−(n+3)(n+2)2)=1−(n+3)+(n+3)(n+2)2=1−n−3+n2+5n+62=−n−2+n2+5n+62=−2n−4+n2+5n+62=n2+3n+22=(n+1)(n+2)2 = - \left( 0 - 1 + (n+3) - \frac{(n+3)(n+2)}{2} \right) = 1 - (n+3) + \frac{(n+3)(n+2)}{2} = 1 - n - 3 + \frac{n^2+5n+6}{2} = -n - 2 + \frac{n^2+5n+6}{2} = \frac{-2n - 4 + n^2 + 5n + 6}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2} =−(0−1+(n+3)−2(n+3)(n+2))=1−(n+3)+2(n+3)(n+2)=1−n−3+2n2+5n+6=−n−2+2n2+5n+6=2−2n−4+n2+5n+6=2n2+3n+2=2(n+1)(n+2)12(1n+1−(n+1)(n+2)2(n+1)(n+2)(n+3))=12(1n+1−12(n+3))=12(2n+6−n−12(n+1)(n+3))=12n+52(n+1)(n+3)=n+54(n+1)(n+3) \frac{1}{2} \left(\frac{1}{n+1} - \frac{(n+1)(n+2)}{2(n+1)(n+2)(n+3)}\right) = \frac{1}{2} \left( \frac{1}{n+1} - \frac{1}{2(n+3)}\right) = \frac{1}{2} \left(\frac{2n+6-n-1}{2(n+1)(n+3)} \right) = \frac{1}{2} \frac{n+5}{2(n+1)(n+3)} = \frac{n+5}{4(n+1)(n+3)}21(n+11−2(n+1)(n+2)(n+3)(n+1)(n+2))=21(n+11−2(n+3)1)=21(2(n+1)(n+3)2n+6−n−1)=212(n+1)(n+3)n+5=4(n+1)(n+3)n+5∑k=0n(−1)knCk(k+1)(k+3)=n+54(n+1)(n+3) \sum_{k=0}^{n} \frac{(-1)^k {}_n C_k}{(k+1)(k+3)} = \frac{n+5}{4(n+1)(n+3)}k=0∑n(k+1)(k+3)(−1)knCk=4(n+1)(n+3)n+512∑k=0n(−1)k(nk)(1k+1−1k+3)=12(1n+1+(n+1)(n+2)2(n+1)(n+2)(n+3)) \frac{1}{2} \sum_{k=0}^n (-1)^k \binom{n}{k} \left( \frac{1}{k+1} - \frac{1}{k+3} \right) = \frac{1}{2} \left(\frac{1}{n+1} + \frac{(n+1)(n+2)}{2(n+1)(n+2)(n+3)}\right) 21k=0∑n(−1)k(kn)(k+11−k+31)=21(n+11+2(n+1)(n+2)(n+3)(n+1)(n+2))=12(n+1)−12∑k(−1)k(nk)k+3 = \frac{1}{2(n+1)} - \frac{1}{2} \frac{\sum_k (-1)^k \binom{n}{k}}{k+3} =2(n+1)1−21k+3∑k(−1)k(kn)部分分数分解により、与式は12∑k=0n(−1)k(nk)(1k+1−1k+3) \frac{1}{2} \sum_{k=0}^n (-1)^k \binom{n}{k} (\frac{1}{k+1}-\frac{1}{k+3})21k=0∑n(−1)k(kn)(k+11−k+31)∑k=0n(−1)k(nk)k+1=1n+1\sum_{k=0}^n \frac{(-1)^k \binom{n}{k}}{k+1} = \frac{1}{n+1}k=0∑nk+1(−1)k(kn)=n+11∑k=0n(−1)k(nk)k+3=2(n+1)(n+2)(n+3) \sum_{k=0}^n \frac{(-1)^k \binom{n}{k}}{k+3} = \frac{2}{(n+1)(n+2)(n+3)}k=0∑nk+3(−1)k(kn)=(n+1)(n+2)(n+3)2よって12[1n+1−2(n+1)(n+2)(n+3)]=12[(n+2)(n+3)−2(n+1)(n+2)(n+3)]=n2+5n+42(n+1)(n+2)(n+3)=(n+4)(n+1)2(n+1)(n+2)(n+3)=n+42(n+2)(n+3)\frac{1}{2} [\frac{1}{n+1} - \frac{2}{(n+1)(n+2)(n+3)}] = \frac{1}{2} [\frac{(n+2)(n+3)-2}{(n+1)(n+2)(n+3)}] = \frac{n^2+5n+4}{2(n+1)(n+2)(n+3)} = \frac{(n+4)(n+1)}{2(n+1)(n+2)(n+3)} = \frac{n+4}{2(n+2)(n+3)}21[n+11−(n+1)(n+2)(n+3)2]=21[(n+1)(n+2)(n+3)(n+2)(n+3)−2]=2(n+1)(n+2)(n+3)n2+5n+4=2(n+1)(n+2)(n+3)(n+4)(n+1)=2(n+2)(n+3)n+43. 最終的な答えn+42(n+2)(n+3)\frac{n+4}{2(n+2)(n+3)}2(n+2)(n+3)n+4