次の2重積分を計算します。 $\iint_D (x+y)^2 dxdy$, ここで、$D = \{(x, y) | x^2 + y^2 \leq 2^2\}$ です。解析学重積分極座標変換積分2025/6/201. 問題の内容次の2重積分を計算します。∬D(x+y)2dxdy\iint_D (x+y)^2 dxdy∬D(x+y)2dxdy, ここで、D={(x,y)∣x2+y2≤22}D = \{(x, y) | x^2 + y^2 \leq 2^2\}D={(x,y)∣x2+y2≤22} です。2. 解き方の手順まず、極座標に変換します。x=rcosθx = r \cos \thetax=rcosθ, y=rsinθy = r \sin \thetay=rsinθE={(r,θ)∣0≤r≤2,−π≤θ≤π}E = \{(r, \theta) | 0 \leq r \leq 2, -\pi \leq \theta \leq \pi\}E={(r,θ)∣0≤r≤2,−π≤θ≤π} とします。このとき、∬D(x+y)2dxdy=∬E(rcosθ+rsinθ)2rdrdθ\iint_D (x+y)^2 dxdy = \iint_E (r \cos \theta + r \sin \theta)^2 r dr d\theta∬D(x+y)2dxdy=∬E(rcosθ+rsinθ)2rdrdθ=∫02∫−ππ(r2cos2θ+2r2cosθsinθ+r2sin2θ)rdrdθ= \int_{0}^{2} \int_{-\pi}^{\pi} (r^2 \cos^2 \theta + 2 r^2 \cos \theta \sin \theta + r^2 \sin^2 \theta) r dr d\theta=∫02∫−ππ(r2cos2θ+2r2cosθsinθ+r2sin2θ)rdrdθ=∫02∫−ππr3(cos2θ+2cosθsinθ+sin2θ)drdθ= \int_{0}^{2} \int_{-\pi}^{\pi} r^3 (\cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta) dr d\theta=∫02∫−ππr3(cos2θ+2cosθsinθ+sin2θ)drdθ=∫02∫−ππr3(1+2sinθcosθ)drdθ= \int_{0}^{2} \int_{-\pi}^{\pi} r^3 (1 + 2 \sin \theta \cos \theta) dr d\theta=∫02∫−ππr3(1+2sinθcosθ)drdθ=∫02r3dr∫−ππ(1+2sinθcosθ)dθ= \int_{0}^{2} r^3 dr \int_{-\pi}^{\pi} (1 + 2 \sin \theta \cos \theta) d\theta=∫02r3dr∫−ππ(1+2sinθcosθ)dθ∫02r3dr=[r44]02=244−044=164=4\int_{0}^{2} r^3 dr = [\frac{r^4}{4}]_0^2 = \frac{2^4}{4} - \frac{0^4}{4} = \frac{16}{4} = 4∫02r3dr=[4r4]02=424−404=416=4∫−ππ(1+2sinθcosθ)dθ=∫−ππ(1+sin2θ)dθ\int_{-\pi}^{\pi} (1 + 2 \sin \theta \cos \theta) d\theta = \int_{-\pi}^{\pi} (1 + \sin 2\theta) d\theta∫−ππ(1+2sinθcosθ)dθ=∫−ππ(1+sin2θ)dθ=[θ−12cos2θ]−ππ=(π−12cos2π)−(−π−12cos(−2π))= [\theta - \frac{1}{2} \cos 2\theta]_{-\pi}^{\pi} = (\pi - \frac{1}{2} \cos 2\pi) - (-\pi - \frac{1}{2} \cos (-2\pi))=[θ−21cos2θ]−ππ=(π−21cos2π)−(−π−21cos(−2π))=(π−12)−(−π−12)=π−12+π+12=2π= (\pi - \frac{1}{2}) - (-\pi - \frac{1}{2}) = \pi - \frac{1}{2} + \pi + \frac{1}{2} = 2\pi=(π−21)−(−π−21)=π−21+π+21=2πしたがって、∫02r3dr∫−ππ(1+2sinθcosθ)dθ=4⋅2π=8π\int_{0}^{2} r^3 dr \int_{-\pi}^{\pi} (1 + 2 \sin \theta \cos \theta) d\theta = 4 \cdot 2\pi = 8\pi∫02r3dr∫−ππ(1+2sinθcosθ)dθ=4⋅2π=8π別の解き方:(解答に書いてあるとおり)∫02∫−ππr3(1+2sinθcosθ)dθdr=∫02r3dr∫−ππ1+2sinθcosθdθ\int_0^2 \int_{-\pi}^{\pi} r^3 (1+2\sin\theta\cos\theta) d\theta dr = \int_0^2 r^3dr \int_{-\pi}^{\pi} 1+2\sin\theta\cos\theta d\theta∫02∫−ππr3(1+2sinθcosθ)dθdr=∫02r3dr∫−ππ1+2sinθcosθdθ=[r44]02[θ+sin2θ]−ππ=[24−04][(π+sin2π)−(−π+sin2(−π))]=[\frac{r^4}{4}]_0^2 [\theta + \sin^2 \theta]_{-\pi}^{\pi} = [\frac{2^4-0}{4}] [(\pi+\sin^2\pi) - (-\pi + \sin^2(-\pi))]=[4r4]02[θ+sin2θ]−ππ=[424−0][(π+sin2π)−(−π+sin2(−π))]=164[(π+0)−(−π+0)]=4(π+π)=8π= \frac{16}{4} [(\pi + 0) - (-\pi + 0)] = 4(\pi+\pi) = 8\pi=416[(π+0)−(−π+0)]=4(π+π)=8π3. 最終的な答え8π8\pi8π