与えられた定積分を計算します。積分は$\int e^{-x} \sin(x+\frac{\pi}{4}) dx$です。解析学積分定積分部分積分三角関数2025/6/201. 問題の内容与えられた定積分を計算します。積分は∫e−xsin(x+π4)dx\int e^{-x} \sin(x+\frac{\pi}{4}) dx∫e−xsin(x+4π)dxです。2. 解き方の手順部分積分を2回適用します。まず、u=sin(x+π4)u = \sin(x+\frac{\pi}{4})u=sin(x+4π)、dv=e−xdxdv = e^{-x} dxdv=e−xdxとします。すると、du=cos(x+π4)dxdu = \cos(x+\frac{\pi}{4}) dxdu=cos(x+4π)dx、v=−e−xv = -e^{-x}v=−e−xとなります。したがって、∫e−xsin(x+π4)dx=−e−xsin(x+π4)−∫(−e−x)cos(x+π4)dx\int e^{-x} \sin(x+\frac{\pi}{4}) dx = -e^{-x}\sin(x+\frac{\pi}{4}) - \int (-e^{-x})\cos(x+\frac{\pi}{4}) dx∫e−xsin(x+4π)dx=−e−xsin(x+4π)−∫(−e−x)cos(x+4π)dx=−e−xsin(x+π4)+∫e−xcos(x+π4)dx= -e^{-x}\sin(x+\frac{\pi}{4}) + \int e^{-x}\cos(x+\frac{\pi}{4}) dx=−e−xsin(x+4π)+∫e−xcos(x+4π)dx次に、∫e−xcos(x+π4)dx\int e^{-x}\cos(x+\frac{\pi}{4}) dx∫e−xcos(x+4π)dxに対して部分積分を適用します。u=cos(x+π4)u = \cos(x+\frac{\pi}{4})u=cos(x+4π)、dv=e−xdxdv = e^{-x} dxdv=e−xdxとします。すると、du=−sin(x+π4)dxdu = -\sin(x+\frac{\pi}{4}) dxdu=−sin(x+4π)dx、v=−e−xv = -e^{-x}v=−e−xとなります。したがって、∫e−xcos(x+π4)dx=−e−xcos(x+π4)−∫(−e−x)(−sin(x+π4))dx\int e^{-x}\cos(x+\frac{\pi}{4}) dx = -e^{-x}\cos(x+\frac{\pi}{4}) - \int (-e^{-x})(-\sin(x+\frac{\pi}{4})) dx∫e−xcos(x+4π)dx=−e−xcos(x+4π)−∫(−e−x)(−sin(x+4π))dx=−e−xcos(x+π4)−∫e−xsin(x+π4)dx= -e^{-x}\cos(x+\frac{\pi}{4}) - \int e^{-x}\sin(x+\frac{\pi}{4}) dx=−e−xcos(x+4π)−∫e−xsin(x+4π)dx以上より、∫e−xsin(x+π4)dx=−e−xsin(x+π4)−e−xcos(x+π4)−∫e−xsin(x+π4)dx\int e^{-x} \sin(x+\frac{\pi}{4}) dx = -e^{-x}\sin(x+\frac{\pi}{4}) - e^{-x}\cos(x+\frac{\pi}{4}) - \int e^{-x}\sin(x+\frac{\pi}{4}) dx∫e−xsin(x+4π)dx=−e−xsin(x+4π)−e−xcos(x+4π)−∫e−xsin(x+4π)dxI=∫e−xsin(x+π4)dxI = \int e^{-x} \sin(x+\frac{\pi}{4}) dxI=∫e−xsin(x+4π)dxとすると、I=−e−xsin(x+π4)−e−xcos(x+π4)−II = -e^{-x}\sin(x+\frac{\pi}{4}) - e^{-x}\cos(x+\frac{\pi}{4}) - II=−e−xsin(x+4π)−e−xcos(x+4π)−I2I=−e−x(sin(x+π4)+cos(x+π4))2I = -e^{-x}(\sin(x+\frac{\pi}{4}) + \cos(x+\frac{\pi}{4}))2I=−e−x(sin(x+4π)+cos(x+4π))I=−12e−x(sin(x+π4)+cos(x+π4))+CI = -\frac{1}{2} e^{-x} (\sin(x+\frac{\pi}{4}) + \cos(x+\frac{\pi}{4})) + CI=−21e−x(sin(x+4π)+cos(x+4π))+Csin(x+π4)+cos(x+π4)=2sin(x+π4+π4)=2sin(x+π2)=2cos(x)\sin(x+\frac{\pi}{4}) + \cos(x+\frac{\pi}{4}) = \sqrt{2}\sin(x+\frac{\pi}{4}+\frac{\pi}{4}) = \sqrt{2}\sin(x+\frac{\pi}{2}) = \sqrt{2}\cos(x)sin(x+4π)+cos(x+4π)=2sin(x+4π+4π)=2sin(x+2π)=2cos(x)したがって、I=−22e−xcos(x)+CI = -\frac{\sqrt{2}}{2}e^{-x}\cos(x) + CI=−22e−xcos(x)+C3. 最終的な答え−e−x2(sin(x+π4)+cos(x+π4))+C=−22e−xcos(x)+C-\frac{e^{-x}}{2} (\sin(x+\frac{\pi}{4}) + \cos(x+\frac{\pi}{4})) + C = -\frac{\sqrt{2}}{2}e^{-x}\cos(x) + C−2e−x(sin(x+4π)+cos(x+4π))+C=−22e−xcos(x)+C