$\sum_{k=1}^{n} (k-1)(k-5)$ を計算する問題です。代数学シグマ数列展開公式2025/6/201. 問題の内容∑k=1n(k−1)(k−5)\sum_{k=1}^{n} (k-1)(k-5)∑k=1n(k−1)(k−5) を計算する問題です。2. 解き方の手順まず、(k−1)(k−5)(k-1)(k-5)(k−1)(k−5) を展開します。(k−1)(k−5)=k2−6k+5(k-1)(k-5) = k^2 - 6k + 5(k−1)(k−5)=k2−6k+5次に、シグマの性質を使って、和を分解します。∑k=1n(k−1)(k−5)=∑k=1n(k2−6k+5)=∑k=1nk2−6∑k=1nk+∑k=1n5\sum_{k=1}^{n} (k-1)(k-5) = \sum_{k=1}^{n} (k^2 - 6k + 5) = \sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k + \sum_{k=1}^{n} 5∑k=1n(k−1)(k−5)=∑k=1n(k2−6k+5)=∑k=1nk2−6∑k=1nk+∑k=1n5ここで、以下の公式を使います。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nc=nc\sum_{k=1}^{n} c = nc∑k=1nc=ncこれらの公式を代入すると、∑k=1nk2−6∑k=1nk+∑k=1n5=n(n+1)(2n+1)6−6⋅n(n+1)2+5n\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k + \sum_{k=1}^{n} 5 = \frac{n(n+1)(2n+1)}{6} - 6 \cdot \frac{n(n+1)}{2} + 5n∑k=1nk2−6∑k=1nk+∑k=1n5=6n(n+1)(2n+1)−6⋅2n(n+1)+5n整理します。n(n+1)(2n+1)6−3n(n+1)+5n=n6[(n+1)(2n+1)−18(n+1)+30]\frac{n(n+1)(2n+1)}{6} - 3n(n+1) + 5n = \frac{n}{6} [ (n+1)(2n+1) - 18(n+1) + 30 ]6n(n+1)(2n+1)−3n(n+1)+5n=6n[(n+1)(2n+1)−18(n+1)+30]=n6[2n2+3n+1−18n−18+30]=n6[2n2−15n+13]= \frac{n}{6} [ 2n^2 + 3n + 1 - 18n - 18 + 30 ] = \frac{n}{6} [ 2n^2 - 15n + 13 ]=6n[2n2+3n+1−18n−18+30]=6n[2n2−15n+13]=n(2n2−15n+13)6= \frac{n(2n^2 - 15n + 13)}{6}=6n(2n2−15n+13)3. 最終的な答えn(2n2−15n+13)6\frac{n(2n^2 - 15n + 13)}{6}6n(2n2−15n+13)