$\sum_{i=1}^n (\sum_{k=1}^i 3k^2)$ を求める問題です。代数学シグマ数列公式和の計算2025/6/201. 問題の内容∑i=1n(∑k=1i3k2)\sum_{i=1}^n (\sum_{k=1}^i 3k^2)∑i=1n(∑k=1i3k2) を求める問題です。2. 解き方の手順まず内側の∑k=1i3k2\sum_{k=1}^i 3k^2∑k=1i3k2を計算します。∑k=1i3k2=3∑k=1ik2\sum_{k=1}^i 3k^2 = 3 \sum_{k=1}^i k^2∑k=1i3k2=3∑k=1ik2∑k=1ik2=i(i+1)(2i+1)6\sum_{k=1}^i k^2 = \frac{i(i+1)(2i+1)}{6}∑k=1ik2=6i(i+1)(2i+1) を用いると、∑k=1i3k2=3⋅i(i+1)(2i+1)6=i(i+1)(2i+1)2=2i3+3i2+i2\sum_{k=1}^i 3k^2 = 3 \cdot \frac{i(i+1)(2i+1)}{6} = \frac{i(i+1)(2i+1)}{2} = \frac{2i^3 + 3i^2 + i}{2}∑k=1i3k2=3⋅6i(i+1)(2i+1)=2i(i+1)(2i+1)=22i3+3i2+i次に、外側の∑i=1n\sum_{i=1}^n∑i=1nを計算します。∑i=1n2i3+3i2+i2=12∑i=1n(2i3+3i2+i)=∑i=1ni3+32∑i=1ni2+12∑i=1ni\sum_{i=1}^n \frac{2i^3 + 3i^2 + i}{2} = \frac{1}{2} \sum_{i=1}^n (2i^3 + 3i^2 + i) = \sum_{i=1}^n i^3 + \frac{3}{2} \sum_{i=1}^n i^2 + \frac{1}{2} \sum_{i=1}^n i∑i=1n22i3+3i2+i=21∑i=1n(2i3+3i2+i)=∑i=1ni3+23∑i=1ni2+21∑i=1ni∑i=1ni=n(n+1)2\sum_{i=1}^n i = \frac{n(n+1)}{2}∑i=1ni=2n(n+1)∑i=1ni2=n(n+1)(2n+1)6\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}∑i=1ni2=6n(n+1)(2n+1)∑i=1ni3=(n(n+1)2)2\sum_{i=1}^n i^3 = (\frac{n(n+1)}{2})^2∑i=1ni3=(2n(n+1))2よって、∑i=1ni3+32∑i=1ni2+12∑i=1ni=(n(n+1)2)2+32⋅n(n+1)(2n+1)6+12⋅n(n+1)2\sum_{i=1}^n i^3 + \frac{3}{2} \sum_{i=1}^n i^2 + \frac{1}{2} \sum_{i=1}^n i = (\frac{n(n+1)}{2})^2 + \frac{3}{2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \cdot \frac{n(n+1)}{2}∑i=1ni3+23∑i=1ni2+21∑i=1ni=(2n(n+1))2+23⋅6n(n+1)(2n+1)+21⋅2n(n+1)=n2(n+1)24+n(n+1)(2n+1)4+n(n+1)4= \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{4} + \frac{n(n+1)}{4}=4n2(n+1)2+4n(n+1)(2n+1)+4n(n+1)=n(n+1)4[n(n+1)+(2n+1)+1]=n(n+1)4[n2+n+2n+2]= \frac{n(n+1)}{4} [n(n+1) + (2n+1) + 1] = \frac{n(n+1)}{4} [n^2 + n + 2n + 2]=4n(n+1)[n(n+1)+(2n+1)+1]=4n(n+1)[n2+n+2n+2]=n(n+1)4[n2+3n+2]=n(n+1)(n+1)(n+2)4=n(n+1)2(n+2)4= \frac{n(n+1)}{4} [n^2 + 3n + 2] = \frac{n(n+1)(n+1)(n+2)}{4} = \frac{n(n+1)^2(n+2)}{4}=4n(n+1)[n2+3n+2]=4n(n+1)(n+1)(n+2)=4n(n+1)2(n+2)3. 最終的な答えn(n+1)2(n+2)4\frac{n(n+1)^2(n+2)}{4}4n(n+1)2(n+2)