次の和を求めます。 $1(2n-1) + 3(2n-3) + 5(2n-5) + \cdots + (2n-3)3 + (2n-1)1$代数学数列シグマ和計算2025/6/201. 問題の内容次の和を求めます。1(2n−1)+3(2n−3)+5(2n−5)+⋯+(2n−3)3+(2n−1)11(2n-1) + 3(2n-3) + 5(2n-5) + \cdots + (2n-3)3 + (2n-1)11(2n−1)+3(2n−3)+5(2n−5)+⋯+(2n−3)3+(2n−1)12. 解き方の手順この数列の一般項を求め、和を計算します。数列は項数が nnn の数列です。第 kkk 項は (2k−1)(2n−(2k−1))(2k-1)(2n - (2k-1))(2k−1)(2n−(2k−1)) と表せます。よって、数列の和はS=∑k=1n(2k−1)(2n−(2k−1))=∑k=1n(2k−1)(2n−2k+1)S = \sum_{k=1}^{n} (2k-1)(2n - (2k-1)) = \sum_{k=1}^{n} (2k-1)(2n - 2k + 1)S=∑k=1n(2k−1)(2n−(2k−1))=∑k=1n(2k−1)(2n−2k+1)=∑k=1n(4nk−4k2+2k−2n+2k−1)= \sum_{k=1}^{n} (4nk - 4k^2 + 2k - 2n + 2k - 1)=∑k=1n(4nk−4k2+2k−2n+2k−1)=∑k=1n(−4k2+(4n+4)k−2n−1)= \sum_{k=1}^{n} (-4k^2 + (4n+4)k -2n-1)=∑k=1n(−4k2+(4n+4)k−2n−1)=−4∑k=1nk2+(4n+4)∑k=1nk−(2n+1)∑k=1n1= -4 \sum_{k=1}^{n} k^2 + (4n+4) \sum_{k=1}^{n} k - (2n+1) \sum_{k=1}^{n} 1=−4∑k=1nk2+(4n+4)∑k=1nk−(2n+1)∑k=1n1=−4n(n+1)(2n+1)6+(4n+4)n(n+1)2−(2n+1)n= -4 \frac{n(n+1)(2n+1)}{6} + (4n+4) \frac{n(n+1)}{2} - (2n+1)n=−46n(n+1)(2n+1)+(4n+4)2n(n+1)−(2n+1)n=−23n(n+1)(2n+1)+2(n+1)n(n+1)−(2n+1)n= -\frac{2}{3}n(n+1)(2n+1) + 2(n+1)n(n+1) - (2n+1)n=−32n(n+1)(2n+1)+2(n+1)n(n+1)−(2n+1)n=13n[−2(n+1)(2n+1)+6(n+1)2−3(2n+1)]= \frac{1}{3}n [ -2(n+1)(2n+1) + 6(n+1)^2 - 3(2n+1) ]=31n[−2(n+1)(2n+1)+6(n+1)2−3(2n+1)]=13n[−2(2n2+3n+1)+6(n2+2n+1)−6n−3]= \frac{1}{3}n [ -2(2n^2+3n+1) + 6(n^2+2n+1) - 6n-3 ]=31n[−2(2n2+3n+1)+6(n2+2n+1)−6n−3]=13n[−4n2−6n−2+6n2+12n+6−6n−3]= \frac{1}{3}n [ -4n^2 -6n -2 + 6n^2 + 12n + 6 - 6n - 3 ]=31n[−4n2−6n−2+6n2+12n+6−6n−3]=13n[2n2+0n+1]= \frac{1}{3}n [ 2n^2 + 0n + 1 ]=31n[2n2+0n+1]=13n[2n2+1]= \frac{1}{3}n [ 2n^2 + 1 ]=31n[2n2+1]3. 最終的な答えn(2n2+1)3\frac{n(2n^2+1)}{3}3n(2n2+1)