次の和を求めよ。 $1\cdot(3n-2) + 3\cdot(3n-5) + 5\cdot(3n-8) + \dots + (2n-3)\cdot 4 + (2n-1)\cdot 1$代数学数列Σ記号和一般項2025/6/201. 問題の内容次の和を求めよ。1⋅(3n−2)+3⋅(3n−5)+5⋅(3n−8)+⋯+(2n−3)⋅4+(2n−1)⋅11\cdot(3n-2) + 3\cdot(3n-5) + 5\cdot(3n-8) + \dots + (2n-3)\cdot 4 + (2n-1)\cdot 11⋅(3n−2)+3⋅(3n−5)+5⋅(3n−8)+⋯+(2n−3)⋅4+(2n−1)⋅12. 解き方の手順与えられた数列の一般項を求め、和を計算する。数列の一般項は ak=(2k−1)(3n−3k+1)a_k = (2k-1)(3n - 3k + 1)ak=(2k−1)(3n−3k+1) で表される。ただし、kkk は 1 から nnn までの整数である。求める和は、∑k=1n(2k−1)(3n−3k+1)=∑k=1n(6nk−6k2+2k−3n+3k−1)=∑k=1n(6nk−6k2+5k−3n−1)\sum_{k=1}^{n} (2k-1)(3n - 3k + 1) = \sum_{k=1}^{n} (6nk - 6k^2 + 2k - 3n + 3k - 1) = \sum_{k=1}^{n} (6nk - 6k^2 + 5k - 3n - 1)∑k=1n(2k−1)(3n−3k+1)=∑k=1n(6nk−6k2+2k−3n+3k−1)=∑k=1n(6nk−6k2+5k−3n−1)∑k=1n6nk=6n∑k=1nk=6n⋅n(n+1)2=3n2(n+1)=3n3+3n2\sum_{k=1}^{n} 6nk = 6n\sum_{k=1}^{n} k = 6n \cdot \frac{n(n+1)}{2} = 3n^2(n+1) = 3n^3 + 3n^2∑k=1n6nk=6n∑k=1nk=6n⋅2n(n+1)=3n2(n+1)=3n3+3n2∑k=1n6k2=6∑k=1nk2=6⋅n(n+1)(2n+1)6=n(n+1)(2n+1)=2n3+3n2+n\sum_{k=1}^{n} 6k^2 = 6\sum_{k=1}^{n} k^2 = 6 \cdot \frac{n(n+1)(2n+1)}{6} = n(n+1)(2n+1) = 2n^3 + 3n^2 + n∑k=1n6k2=6∑k=1nk2=6⋅6n(n+1)(2n+1)=n(n+1)(2n+1)=2n3+3n2+n∑k=1n5k=5∑k=1nk=5⋅n(n+1)2=5n2+5n2\sum_{k=1}^{n} 5k = 5\sum_{k=1}^{n} k = 5 \cdot \frac{n(n+1)}{2} = \frac{5n^2 + 5n}{2}∑k=1n5k=5∑k=1nk=5⋅2n(n+1)=25n2+5n∑k=1n(3n+1)=(3n+1)∑k=1n1=(3n+1)n=3n2+n\sum_{k=1}^{n} (3n+1) = (3n+1) \sum_{k=1}^{n} 1 = (3n+1)n = 3n^2 + n∑k=1n(3n+1)=(3n+1)∑k=1n1=(3n+1)n=3n2+nしたがって、∑k=1n(6nk−6k2+5k−3n−1)=(3n3+3n2)−(2n3+3n2+n)+(5n2+5n2)−(3n2+n)\sum_{k=1}^{n} (6nk - 6k^2 + 5k - 3n - 1) = (3n^3 + 3n^2) - (2n^3 + 3n^2 + n) + (\frac{5n^2 + 5n}{2}) - (3n^2 + n)∑k=1n(6nk−6k2+5k−3n−1)=(3n3+3n2)−(2n3+3n2+n)+(25n2+5n)−(3n2+n)=n3−n+5n2+5n2−3n2−n=n3+5n22−3n2+5n2−2n=n3−n22+n2=2n3−n2+n2= n^3 - n + \frac{5n^2 + 5n}{2} - 3n^2 - n = n^3 + \frac{5n^2}{2} - 3n^2 + \frac{5n}{2} - 2n = n^3 - \frac{n^2}{2} + \frac{n}{2} = \frac{2n^3 - n^2 + n}{2}=n3−n+25n2+5n−3n2−n=n3+25n2−3n2+25n−2n=n3−2n2+2n=22n3−n2+n=n(2n2−n+1)2= \frac{n(2n^2 - n + 1)}{2}=2n(2n2−n+1)3. 最終的な答えn(2n2−n+1)2\frac{n(2n^2 - n + 1)}{2}2n(2n2−n+1)