次の和を求めよ: $1\cdot2\cdot3 + 2\cdot4\cdot5 + 3\cdot6\cdot7 + \dots + n\cdot2n(2n+1)$代数学級数シグマ公式2025/6/201. 問題の内容次の和を求めよ:1⋅2⋅3+2⋅4⋅5+3⋅6⋅7+⋯+n⋅2n(2n+1)1\cdot2\cdot3 + 2\cdot4\cdot5 + 3\cdot6\cdot7 + \dots + n\cdot2n(2n+1)1⋅2⋅3+2⋅4⋅5+3⋅6⋅7+⋯+n⋅2n(2n+1)2. 解き方の手順求める和を SSS とすると、S=∑k=1nk(2k)(2k+1)=∑k=1n2k2(2k+1)=∑k=1n(4k3+2k2)S = \sum_{k=1}^{n} k(2k)(2k+1) = \sum_{k=1}^{n} 2k^2(2k+1) = \sum_{k=1}^{n} (4k^3 + 2k^2)S=∑k=1nk(2k)(2k+1)=∑k=1n2k2(2k+1)=∑k=1n(4k3+2k2)したがって、S=4∑k=1nk3+2∑k=1nk2S = 4\sum_{k=1}^{n} k^3 + 2\sum_{k=1}^{n} k^2S=4∑k=1nk3+2∑k=1nk2ここで、∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4}∑k=1nk3=(2n(n+1))2=4n2(n+1)2よって、S=4⋅n2(n+1)24+2⋅n(n+1)(2n+1)6S = 4\cdot \frac{n^2(n+1)^2}{4} + 2\cdot \frac{n(n+1)(2n+1)}{6}S=4⋅4n2(n+1)2+2⋅6n(n+1)(2n+1)=n2(n+1)2+n(n+1)(2n+1)3= n^2(n+1)^2 + \frac{n(n+1)(2n+1)}{3}=n2(n+1)2+3n(n+1)(2n+1)=n(n+1)[n(n+1)+2n+13]= n(n+1) \left[ n(n+1) + \frac{2n+1}{3} \right]=n(n+1)[n(n+1)+32n+1]=n(n+1)[3n2+3n+2n+13]= n(n+1) \left[ \frac{3n^2+3n+2n+1}{3} \right]=n(n+1)[33n2+3n+2n+1]=n(n+1)(3n2+5n+1)3= \frac{n(n+1)(3n^2+5n+1)}{3}=3n(n+1)(3n2+5n+1)3. 最終的な答えn(n+1)(3n2+5n+1)3\frac{n(n+1)(3n^2+5n+1)}{3}3n(n+1)(3n2+5n+1)