定積分 $S(2) = -\int_{2-\sqrt{2}}^{2+\sqrt{2}} (x^3 - 4x^2 + 2x) dx$ を計算する問題です。解析学定積分積分計算2025/6/201. 問題の内容定積分 S(2)=−∫2−22+2(x3−4x2+2x)dxS(2) = -\int_{2-\sqrt{2}}^{2+\sqrt{2}} (x^3 - 4x^2 + 2x) dxS(2)=−∫2−22+2(x3−4x2+2x)dx を計算する問題です。2. 解き方の手順まず、積分を計算します。x3−4x2+2xx^3 - 4x^2 + 2xx3−4x2+2x の不定積分は 14x4−43x3+x2\frac{1}{4}x^4 - \frac{4}{3}x^3 + x^241x4−34x3+x2 です。したがって、定積分は∫2−22+2(x3−4x2+2x)dx=[14x4−43x3+x2]2−22+2\int_{2-\sqrt{2}}^{2+\sqrt{2}} (x^3 - 4x^2 + 2x) dx = [\frac{1}{4}x^4 - \frac{4}{3}x^3 + x^2]_{2-\sqrt{2}}^{2+\sqrt{2}}∫2−22+2(x3−4x2+2x)dx=[41x4−34x3+x2]2−22+2=(14(2+2)4−43(2+2)3+(2+2)2)−(14(2−2)4−43(2−2)3+(2−2)2)= (\frac{1}{4}(2+\sqrt{2})^4 - \frac{4}{3}(2+\sqrt{2})^3 + (2+\sqrt{2})^2) - (\frac{1}{4}(2-\sqrt{2})^4 - \frac{4}{3}(2-\sqrt{2})^3 + (2-\sqrt{2})^2)=(41(2+2)4−34(2+2)3+(2+2)2)−(41(2−2)4−34(2−2)3+(2−2)2)(2+2)2=4+42+2=6+42(2+\sqrt{2})^2 = 4 + 4\sqrt{2} + 2 = 6 + 4\sqrt{2}(2+2)2=4+42+2=6+42(2−2)2=4−42+2=6−42(2-\sqrt{2})^2 = 4 - 4\sqrt{2} + 2 = 6 - 4\sqrt{2}(2−2)2=4−42+2=6−42(2+2)3=(2+2)(6+42)=12+82+62+8=20+142(2+\sqrt{2})^3 = (2+\sqrt{2})(6+4\sqrt{2}) = 12 + 8\sqrt{2} + 6\sqrt{2} + 8 = 20 + 14\sqrt{2}(2+2)3=(2+2)(6+42)=12+82+62+8=20+142(2−2)3=(2−2)(6−42)=12−82−62+8=20−142(2-\sqrt{2})^3 = (2-\sqrt{2})(6-4\sqrt{2}) = 12 - 8\sqrt{2} - 6\sqrt{2} + 8 = 20 - 14\sqrt{2}(2−2)3=(2−2)(6−42)=12−82−62+8=20−142(2+2)4=(6+42)2=36+482+32=68+482(2+\sqrt{2})^4 = (6+4\sqrt{2})^2 = 36 + 48\sqrt{2} + 32 = 68 + 48\sqrt{2}(2+2)4=(6+42)2=36+482+32=68+482(2−2)4=(6−42)2=36−482+32=68−482(2-\sqrt{2})^4 = (6-4\sqrt{2})^2 = 36 - 48\sqrt{2} + 32 = 68 - 48\sqrt{2}(2−2)4=(6−42)2=36−482+32=68−48214(68+482)−43(20+142)+(6+42)−(14(68−482)−43(20−142)+(6−42))\frac{1}{4}(68+48\sqrt{2}) - \frac{4}{3}(20+14\sqrt{2}) + (6+4\sqrt{2}) - (\frac{1}{4}(68-48\sqrt{2}) - \frac{4}{3}(20-14\sqrt{2}) + (6-4\sqrt{2})) 41(68+482)−34(20+142)+(6+42)−(41(68−482)−34(20−142)+(6−42))=68+4824−80+5623+6+42−(68−4824−80−5623+6−42)= \frac{68+48\sqrt{2}}{4} - \frac{80+56\sqrt{2}}{3} + 6 + 4\sqrt{2} - (\frac{68-48\sqrt{2}}{4} - \frac{80-56\sqrt{2}}{3} + 6 - 4\sqrt{2})=468+482−380+562+6+42−(468−482−380−562+6−42)=(17+122)−(803+5623)+6+42−(17−122)+(803−5623)−6+42= (17+12\sqrt{2}) - (\frac{80}{3} + \frac{56\sqrt{2}}{3}) + 6 + 4\sqrt{2} - (17-12\sqrt{2}) + (\frac{80}{3} - \frac{56\sqrt{2}}{3}) - 6 + 4\sqrt{2}=(17+122)−(380+3562)+6+42−(17−122)+(380−3562)−6+42=17+122−803−5623+6+42−17+122+803−5623+6−42= 17 + 12\sqrt{2} - \frac{80}{3} - \frac{56\sqrt{2}}{3} + 6 + 4\sqrt{2} - 17 + 12\sqrt{2} + \frac{80}{3} - \frac{56\sqrt{2}}{3} + 6 - 4\sqrt{2}=17+122−380−3562+6+42−17+122+380−3562+6−42=242−11223+82=322−11223=962−11223=−1623= 24\sqrt{2} - \frac{112\sqrt{2}}{3} + 8\sqrt{2} = 32\sqrt{2} - \frac{112\sqrt{2}}{3} = \frac{96\sqrt{2}-112\sqrt{2}}{3} = -\frac{16\sqrt{2}}{3}=242−31122+82=322−31122=3962−1122=−3162S(2)=−(−1623)=1623S(2) = - (-\frac{16\sqrt{2}}{3}) = \frac{16\sqrt{2}}{3}S(2)=−(−3162)=31623. 最終的な答え1623\frac{16\sqrt{2}}{3}3162